面向实车数据的电动汽车电池退役轨迹预测

周雅夫, 史宏宇

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 510-517.

PDF(1979 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1979 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 510-517. DOI: 10.19912/j.0254-0096.tynxb.2022-0506

面向实车数据的电动汽车电池退役轨迹预测

  • 周雅夫1,2, 史宏宇1,2
作者信息 +

BATTERY RETIREMENT TRAJECTORY PREDICTION OF ELECTRIC VEHICLE BASED ON REAL VEHICLE DATA

  • Zhou Yafu1,2, Shi Hongyu1,2
Author information +
文章历史 +

摘要

针对车载环境下电池容量难以预测,电池退役时间难以确定的问题,提出基于车辆日常充电片段数据来估算电池当前最大可用电量,构建电池当前可用最大容量与行驶里程的序列关系以描述电池的退化特征,为剩余寿命预测提供可靠依据。首先在电池的充电工况下以安时积分法估算电池的当前可用最大容量,利用卡尔曼滤波对得到的容量值进行修正,然后建立长短期记忆(LSTM)神经网络模型来预测在车辆行驶里程下的电池容量衰退轨迹。结果表明:该方法实现了电池容量的准确预测,为车辆电池退役时间确定提供了可靠依据。不同训练集下均方根误差均低于多项式回归模型和高斯回归模型,预测精度至少提高了12.7%,具有较强的适用性和实际意义。

Abstract

Aiming at the problem that battery capacity is difficult to predict and battery retirement time is difficult to determine in the vehicle environment, using the daily charging segment data of the vehicle to estimate the current maximum available power of the battery. Constructing the sequence relationship between the current maximum available capacity of the battery and the driving mileage to describe the degradation characteristics of the battery, which provides a reliable basis for the prediction of remaining life. Firstly, under the charging condition of the battery, estimating the current available maximum capacity of the battery by ampere hour integral method, and correcting the obtained capacity value by Kalman filter. Then, predicting the decline trajectory of battery capacity under vehicle mileage by long short-term memory (LSTM) neural network model. The results show that this method can accurately predict the battery capacity and provide a reliable basis for the determination of vehicle retirement time, the root mean square error of different training sets is lower than that of polynomial regression model and Gaussian regression model, and the prediction accuracy is improved by at least 12.7%, which has strong applicability and practical significance.

关键词

电动汽车 / 寿命预测 / 动力电池 / 梯次利用 / 电池容量 / 卡尔曼滤波 / LSTM网络模型

Key words

electric vehicles / life prediction / power battery / echelon utilization / battery capacity / Kalman filtering / LSTM network model

引用本文

导出引用
周雅夫, 史宏宇. 面向实车数据的电动汽车电池退役轨迹预测[J]. 太阳能学报. 2022, 43(5): 510-517 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0506
Zhou Yafu, Shi Hongyu. BATTERY RETIREMENT TRAJECTORY PREDICTION OF ELECTRIC VEHICLE BASED ON REAL VEHICLE DATA[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 510-517 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0506
中图分类号: TM912   

参考文献

[1] 徐东辉. 车用锂离子动力电池剩余寿命非线性组合预测研究[J]. 北京师范大学学报(自然科学版), 2021, 57(5): 571-576.
XU D H.Study on nonlinear combination prediction of RUL state space time series of automotive lithium-ion power batteries[J]. Journal of Beijing Normal University(natural science), 2021, 57(5): 571-576.
[2] 陶文玉, 张敏, 徐霁旸. 锂离子电池循环寿命研究综述[J]. 电源技术, 2018, 42(7): 1082-1084.
TAO W Y, ZHANG M, XU J Y.Review on cycle life studies of lithium ion batteries[J]. Power supply technology, 2018, 42(7): 1082-1084.
[3] 梁书旗. 电动汽车动力电池衰退模式分类及性能评估[D]. 哈尔滨: 哈尔滨工业大学, 2016.
LIANG S Q.Decline mode classification and performance evaluation of electric vehicle power battery[D]. Harbin: Harbin Institute of Technology, 2016.
[4] NEUBAUER J, PESARAN A.The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications[J]. Journal of power sources, 2011, 196(23): 10351-10358.
[5] 胡慧敏. 车用锂离子电池健康状态估计及剩余寿命预测[D]. 西安: 长安大学, 2020.
HU H M.State of health estimation and remaining useful life prediction of lithium ion for electric vehicles[D]. Xi’an: Chang’an University, 2020.
[6] 于浩. 基于深度高斯过程的锂电池剩余寿命预测[D]. 北京: 北京交通大学, 2020.
YU H.Remaining useful life prediction of lithium-ion battery based on deep Gaussian process[D]. Beijing: Beijing Jiaotong University, 2020.
[7] 罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013(1): 140-144.
LUO W L, ZHANG L Q, LYU C, et al.Review on foreign status of life prediction of lithium-ion batteries[J]. Journal of power supply, 2013(1): 140-144.
[8] 于海芳, 陈文帅. 锂离子动力电池寿命预测技术综述[J]. 电源技术, 2018, 42(2): 304-307.
YU H F, CHEN W S.Summary of life prediction technology for lithium-ion power batteries[J]. Power supply technology, 2018, 42(2): 304-307.
[9] 张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1): 138-144.
ZHANG X F, YAO M M, WANG Z Y, et al.Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy storage science and technology, 2020, 9(1): 138-144.
[10] 王常虹, 董汉成, 凌明祥, 等. 车用锂离子电池剩余使用寿命预测方法[J]. 汽车工程. 2015, 37(4): 476-479.
WANG C H, DONG H C, LING M X, et al.Remaining useful life prediction of automotive lithium-ion battery[J]. Automotive engineering, 2015, 37(4): 476-479.
[11] YU J B.State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble[J]. Reliability engineering & system safety, 2018, 174: 82-95.
[12] WANG Z, ZENG S, GUO J, et al.State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167: 661-669.
[13] ABRAHAM D P, KNUTH J, DEES D W, et al.Performance degradation of high-power lithium-ion cells—Electrochemistry of harvested electrodes[J]. Journal of power sources, 2007, 170(2): 465-475.
[14] ZHANG L, MA Y, CHENG X, et al.Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of power sources, 2016, 329: 255-261.
[15] 刘月峰. 基于数据驱动的锂离子电池剩余寿命融合预测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LIU Y F.Research on data-driven fusion prediction methods of lithium-ion battery remaining useful life[D]. Harbin: Harbin Institute of Technology, 2020.
[16] 肖迁, 焦志鹏, 穆云飞, 等. 基于LightGBM的电动汽车行驶工况下电池剩余使用寿命预测[J]. 电工技术学报, 2021, 36(24): 5176-5185.
XIAO Q, JIAO Z P, MU Y F, et al.LightGBM based remaining useful life prediction of electric vehicle lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5176-5185.
[17] 赵开. 基于数据驱动的锂离子电池寿命预测技术研究[D]. 成都: 电子科技大学, 2021.
ZHAO K.Research on life prediction technology of lithium-ion battery based on data driven[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[18] ZHENG Y, WANG J, QIN C, et al.A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 185: 361-371.
[19] TONG G, CAI J, HUANG L, et al.A modified extend Kalman filter based approach for lithium-ion battery RUL prognosis[C]//IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China, 2021: 199-203.
[20] 周韦润, 姜文刚. 基于遗传算法优化扩展卡尔曼滤波的锂电池SOC估计[J]. 重庆理工大学学报(自然科学), 2019, 33(9): 33-39.
ZHOU W R, JIANG W G.Lithium battery SOC estimation based on genetic algorithm optimized extended Kalman filter[J]. Journal of Chongqing University of Technology(natural science), 2019, 33(9): 33-39.
[21] 张明德, 刘延, 褚观耀. 基于卡尔曼滤波的车辆硬件在环系统的精确设计[J]. 自动化与仪器仪表, 2021(10): 80-83.
ZHANG M D, LIU Y, ZHU G Y.Accurate design of vehicle hardware-in-the-loop system based on Kalman filter[J]. Automation and instrumentation, 2021(10): 80-83.
[22] 李向南. 基于神经网络模型的锂离子电池寿命预测研究[D]. 成都: 电子科技大学, 2019.
LI X N.Research on prediction of lithium-ion battery life based on neural network model[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[23] 王斐. 基于LSTM神经网络的锂电池SOH预测研究[D]. 重庆: 重庆邮电大学, 2020.
WANG F.Research on SOH prediction of lithium battery based on LSTM neural network[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020.

PDF(1979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/