虚拟同步发电机针对(VSG)控制对风电机组机械结构影响缺乏认知问题,开展VSG控制下双馈风电机组(DFIG)传动链动态特性分析研究。建立计及传动链柔性的DFIG模型,并通过转子侧变流器实现DFIG的VSG控制。考虑电网频率冲击扰动与风速持续扰动两种情况,通过所建模型仿真对比VSG控制和传统矢量控制下DFIG传动链动态特性,并分别从时域和频域分析VSG关键控制参数对传动链动态特性的影响。结果表明,DFIG运行于VSG控制模式时,电网频率冲击扰动在其传动链激励出大幅度的冲击性自由扭振,风速持续扰动引发其传动链出现大幅度的持续性受迫扭振和幅度较小的持续性自由扭振,且VSG关键控制参数对自由扭振强度影响显著。
Abstract
Due to the lack of knowledge of the impact of Virtual synchronous generator(VSG) control on the mechanical structure of wind turbines, the dynamic characteristics of the drive train is studied for a doubly-fed induction generator (DFIG) under VSG control. The DFIG model is developed taking into account the flexibility of the drive train, and the VSG control of the DFIG is achieved on the rotor-side converter. Considering the impulsive disturbance of the grid frequency and the continuous disturbance of the wind speed, the dynamic characteristics of the drive train are compared for a DFIG under VSG control and traditional vector control through the simulations of the established model. The influence of the key VSG control parameters on the dynamic characteristics of the drive train is analyzed on time domain and frequency domain, respectively. The results show that, when the DFIG is operating in the VSG control mode, the impulsive disturbance of the grid frequency excites an impulsive free-torsional-vibration with a large amplitude on its drive chain, and the continuous disturbances of the wind speed triggers a continuous forced-torsional-vibration with a large amplitude and a continuous free-torsional-vibration with a small amplitude on its drive train, and the key VSG control parameters have a significant influence on the free-torsional-vibration.
关键词
风力发电 /
虚拟 /
同步发电机 /
传动链 /
双馈风电机组
Key words
wind power /
virtual /
synchronous generator /
drive train /
doubly-fed wind turbine
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001.
LI Z, CHEN S Y, DONG W J,et al.Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001.
[2] 刘其辉, 高瑜, 郭天飞, 等. 风电并网系统阻抗稳定性分析及次同步振荡因素研究[J]. 太阳能学报, 2022, 43(1): 89-100.
LIU Q H, GAO Y, GUO T F, et al.Research on impedance stability analysis and subsynchronous oscillation factors of wind power grid-connected system[J]. Acta energiae solaris sinica, 2022, 43(1): 89-100.
[3] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
XIE X R, HE J B, MAO H Y, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[4] GB/T 19963.1—2021,风电场接入电力系统技术规定第1部分:陆上风电[S].
GB/T 19963.1—2021,Technical regulations for wind farm access to power system Part 1: onshore wind power[S].
[5] 程鹏, 马静, 李庆, 等. 风电机组电网友好型控制技术要点及展望[J]. 中国电机工程学报, 2020, 40(2): 456-467.
CHENG P, MA J, LI Q,et al.A review on grid-friendly control technologies for wind power generators[J]. Proceedings of the CSEE, 2020, 40(2): 456-467.
[6] MA J, QIU Y, LI Y N, et al.Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop[J]. IEEE transactions on power systems, 2017, 32(3): 2094-2105.
[7] ZHANG X J, HE W, HU J B.Impact of inertia control of DFIG-based WT on torsional vibration in drivetrain[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2525-2534.
[8] WANG S, HU J B, YUAN X M.DFIG-based wind turbines with virtual synchronous control: inertia support in weak grid[C]//2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015: 1-14.
[9] WANG F, ZHANG L J, FENG X Y,et al.An adaptive control strategy for virtual synchronous generator[J]. IEEE transactions on industry applications, 2018, 54(5): 5124-5133.
[10] 宋鹏, 崔阳, 葛俊, 等. 风电虚拟同步发电机主动调频性能实测验证与优化[J]. 太阳能学报, 2021, 42(1): 264-271.
SONG P, CUI Y, GE J,et al.Wind power virtual synchronous generator active frequency regulation performance engineering verification and optimization[J]. Acta energiae solaris sinica, 2021, 42(1): 264-271.
[11] ZHONG Q C,MA Z Y,MING W L,et al.Grid-friendly wind power systems based on the synchronverter technology[J]. Energy conversion & management, 2015, 89: 719-726.
[12] WANG S,HU J B,YUAN X M.Virtual synchronous control for grid-connected DFIG-based wind turbines[J]. IEEE journal of emerging & selected topics in power electronics, 2015, 3(4): 932-944.
[13] 张琛, 蔡旭, 李征. 具有自主电网同步与弱网稳定运行能力的双馈风电机组控制方法[J]. 中国电机工程学报, 2017, 37(2): 476-486.
ZHANG C, CAI X, LI Z.Control of DFIG-based wind turbines with the capability of automatic grid-synchronization and stable operation under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(2): 476-486.
[14] 程雪坤, 孙旭东, 柴建云, 等. 电网对称故障下双馈风力发电机的虚拟同步控制策略[J]. 电力系统自动化, 2017, 41(20): 47-54, 125.
CHENG X K, SUN X D, CHAI J Y,et al.Virtual synchronous control strategy for doubly-fed induction generator wind turbines under symmetrical grid faults[J]. Automation of electric power systems, 2017, 41(20): 47-54, 125.
[15] 程雪坤, 孙旭东, 柴建云, 等. 适用于电网不对称故障的双馈风力发电机虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 120-126.
CHENG X K,SUN X D, CHAI J Y, et al.Virtual synchronous control strategy for doubly-fed induction generator under asymmetrical grid faults[J]. Automation of electric power systems, 2018, 42(9): 120-126.
[16] 李辉, 王坤, 胡玉, 等. 双馈风电系统虚拟同步控制的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2019, 39(12): 3434-3443.
LI H, WANG K, HU Y,et al.Impedance modeling and stability analysis of virtual synchronous control based on doubly-fed wind generation systems[J]. Proceeding of the CSEE, 2019, 39(12): 3434-3443.
[17] VIDYANANDAN K V, SENROY N.Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE transactions on power systems, 2013, 28(2): 837-846.
[18] 李辉, 韩力, 赵斌, 等. 风电机组等效模型对机组暂态稳定分析结果的影响[J]. 中国电机工程学报, 2008, 28(17): 105-111.
Ll H, HAN L, ZHAO B, et al.Effeet of equivalent models of wind turbine on analysis transient stability for wind generator systems[J]. Proceedings of the CSEE, 2008, 28(17): 105-111.
基金
重庆市基础科学与前沿技术研究专项基金资助项目(cstc2020jcyj-msxmX0395); 重庆市教委科学技术研究项目(KJQN201901104); 重庆理工大学科研启动基金资助项目(2019ZD18); 国家自然科学基金(51675354)