通过分析的方法分析以R134a为制冷剂的中温闭式热泵干燥消防水带系统的性能,对比研究不同干燥温度下系统COP、单位能耗除湿量、损失以及效率的变化情况,确定系统最佳干燥工况。结果表明:随着干燥温度的提高,干燥时间逐渐变短,系统COP逐渐降低,总损失降低,效率随之增加。在干燥温度为65 ℃时系统总耗电量达到最小值,为3.01 kWh。此时单位能耗除湿量(SMER)达到最大,为0.537 kg/kWh。系统效率在干燥温度为60 ℃时达到最大,为44.2%,比干燥温度为40 ℃的最低效率提高87.3%。
Abstract
Exergy analysis was conducted to analyze the performance of the medium temperature closed-loop heat pump drying system for the fire hose with R134a as refrigerant. Through experiments, the changes of COP, specific moisture extraction rate, exergy loss and exergy efficiency of the system at different air supply temperatures were studied to determine the optimal drying conditions of the system. The results show that as the drying temperature increases, the drying time gradually become shorter, the system coefficient of performance gradually decreases, and the overall exergy loss gradually decreases, and exergy efficiency increases. When the drying temperature is 65 ℃, the total power consumption of the system reaches the minimum value of 3.01 kWh. At this point, the specific moisture extraction rate (SMER) reaches the maximum value, which is 0.537 kg/kWh. Overall exergic efficiency reaches the maximum of 44.2% at 60 ℃, 87.3% higher than the lowest exergic efficiency at 40 ℃.
关键词
热泵干燥 /
分析 /
效率 /
单位能耗除湿量
Key words
heat pump drying /
exergy analysis /
exergy efficiency /
specific moisture extraction rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB6246—2011, 消防水带[S].
GB6246—2011, Fire hose[S].
[2] 冯怡然, 刘磊, 芦金石, 等. 消防水带晾晒自动收卷装置[J]. 消防科学与技术, 2016, 35(3): 397-401.
FENG Y R, LIU L, LU J S, et al.Design and analysis on drying and automatic winding machine of fire hose[J]. Fire science and technology, 2016, 35(3): 397-401.
[3] 朱传辉, 李保国, 杨会芳, 等. 太阳能-热泵联合装置设计及香菇干燥实验研究[J]. 太阳能学报, 2020, 41(11): 149-155.
ZHU C H, LI B G, YANG H F, et al.Design of solar-heat pump combined device and experiment on drying of shiitake mushroom[J]. Acta energiae solaris sinica, 2020, 41(11): 149-155.
[4] 何伟, 储文峰, 胡中停, 等. 新型太阳能-空气源热泵联合干燥系统设计及枸杞干燥实验研究[J]. 太阳能学报, 2021, 42(12): 59-63.
HE W, CHU W F, HU Z T, et al.Design of new solar energy and air source heat pump combined drying system and experimental study on Chinese wolfberry drying[J]. Acta energiae solaris sinica, 2021, 42(12): 59-63.
[5] 陈杨华, 徐珩, 廖玉璠. 玫瑰花热风干燥实验及模型研究[J]. 热科学与技术, 2017, 16(2): 132-136.
CHEN Y H, XU H, LIAO Y F.Experimental and model study on hot air drying of rose[J]. Journal of thermal science and technology, 2017, 16(2): 132-136.
[6] 李绚阳, 兰青, 夏朝凤, 等. 核桃热泵干燥特性及数学模型研究[J]. 太阳能学报, 2017, 38(1): 91-97.
LI X Y, LAN Q, XIA C F, et al.Studies on the heat pump drying characteristics and mathematical model of walnuts[J]. Acta energiae solaris sinica, 2017, 38(1): 91-97.
[7] KATO K. Exergy evaluation in grain drying[J]. Springer Berlin Heidelberg, 1985. https://doi.org/10.1007/978-3-662-21830-357.
[8] 张绪坤, 李华栋, 徐刚, 等. 热泵干燥系统性能试验研究[J]. 农业工程学报, 2006(4): 94-98.
ZHANG X K, LI H D, XU G, et al.Experimental study on the performance of heat pump drying system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006(4): 94-98.
[9] 朱明善. 能量系统的分析(1版)[M]. 北京: 清华大学出版社, 1988: 229-239.
ZHU M S.Exergic analysis of energy systems(1st edition) Beijing[M]. : Tsinghua University Press, 1988: 229-239.
[10] 宋朋洋, 欧阳新萍, 郭聪. 封闭式热泵干燥装置的分析及优化探讨[J]. 制冷与空调, 2012, 12(2): 31-34.
SONG P Y, OUYANG X P, GUO C.Analysis and optimization study of closed heat pump drying machine[J]. Refrigeration and air-conditioning, 2012, 12(2): 31-34.
[11] ATALAY H.Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance[J]. Energy, 2019, 189: 116180.
[12] 陈军, 史琳, 张璧光, 等. 高温热泵干燥系统的分析[J]. 华北电力大学学报, 2004(6): 78-80.
CHEN J, SHI L, ZHANG B G, et al.Exergy analysis of a high temperature heat pump system on lumber drying[J]. Journal of North China Electric Power University, 2004(6): 78-80.
[13] 傅秦生. 能量系统的热力学分析方法[M]. 西安: 西安交通大学出版社, 2005: 127-137.
FU Q S.Methods for thermodynamic analysis of energy systems[M]. Xi’an: Xi’an Jiaotong University Press, 2005: 127-137.
[14] YAN G, CHEN J H, YU J L.Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle[J]. Energy conversion and management, 2015, 105: 509-517.
[15] 李震, 江亿, 刘晓华, 等. 湿空气处理的()分析[J]. 暖通空调, 2005, 35(1): 97-102, 138.
LI Z, JIANG Y, LIU X H, et al.Exergy analysis in humid air processes[J]. Journal of HV & AC, 2005, 35(1): 97-102, 138.
[16] 李长友. 粮食热风干燥系统评价理论研究[J]. 农业工程学报, 2012, 28(12): 1-6.
LI C Y.Exergy evaluation theory of hot air drying system for grains[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 1-6.
[17] GANJEHSARABI H, DINCER I, GUNGOR A.Exergoeconomic analysis of a heat pump tumbler dryer[J]. Drying technology, 2014, 32(3): 352-360.
[18] 高志宏. 制冷系统的效率分析[J]. 辽宁师专学报(自然科学版), 2003(3): 17-18,70.
GAO Z H.Exergy efficiency analysis of refrigeration system[J]. Journal of Liaoning Teachers College(natural science edition), 2003(3): 17-18, 70.
基金
山东省高等学校科技计划项目——潮汐引发渗流作用下浅滩热泵水平埋管换热机理研究(J18KA189)