基于VMD和双模EMPC的含不确定源荷虚拟电厂优化调度

余洋, 温波, 王紫阳, 米增强, 袁玉宝, 常生强

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 130-138.

PDF(1780 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1780 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 130-138. DOI: 10.19912/j.0254-0096.tynxb.2022-0516

基于VMD和双模EMPC的含不确定源荷虚拟电厂优化调度

  • 余洋1,2, 温波1,3, 王紫阳1,3, 米增强1,3, 袁玉宝2, 常生强2
作者信息 +

OPTIMAL SCHEDULING OF VIRTUAL POWER PLANT WITH UNCERTAIN SOURCES AND LOADS BASED ON VMD AND DUAL-MODE EMPC

  • Yu Yang1,2, Wen Bo1,3, Wang Ziyang1,3, Mi Zengqiang1,3, Yuan Yubao2, Chang Shengqiang2
Author information +
文章历史 +

摘要

提出基于变分模态分解和双模经济模型预测控制的虚拟电厂(VPP)优化调度方法。首先,对于风电、光伏、负荷等原始功率曲线,分别通过经鲸鱼算法参数优化的变分模态分解算法进行处理,并利用互信息熵重构形成新的高、低频分量;然后,考虑高、低频分量频率特征以及可控设备不同运行特性分别设计VPP高低频优化调度模型。在此基础上,提出基于双模经济模型预测控制的VPP优化运行控制策略,模态1通过经济模型预测控制改善运行经济性,模态2借助设计的辅助控制器维持跟踪性能。最后,算例分析表明,经参数优化后的变分模态分解信号重构效果更好,提出的双模经济模型预测控制策略可协调各设备出力,在确保VPP跟踪稳态最优点的基础上可提升经济性。

Abstract

It is crucial to realize both economical operation and good tracking performance of the virtual power plant (VPP) with uncertain source and load. This paper proposes an optimal scheduling method of VPP based on variational mode decomposition and dual-mode economic model predictive control. Firstly, the original power curves of wind power, photovoltaic power and load are decomposed by the variational mode decomposition algorithm optimized by the whale algorithm, and new high and low frequency components are reconstructed by mutual information entropy. Then, considering the frequency characteristics and different operating characteristics of controllable equipment, the optimal scheduling model of VPP is designed. An optimization operation control strategy of VPP in terms of dual-mode economic model predictive control is presented on this basis. Operating economy is improved through economic model predictive control through Mode1, and better tracking performance is maintained with the help of auxiliary controller through Mode 2. Finally, the case analysis demonstrates that the signal reconstruction result through the variational mode decomposition after parameter optimization is enhanced. The proposed dual-mode economic model predictive control strategy can coordinate the output of different type of equipment and improve the operation economy of VPP on the basis of ensuring it to track the optimal point of steady state.

关键词

虚拟电厂 / 不确定性 / 变分模态分解 / 模型预测控制 / 电负荷调度

Key words

virtual power plant / uncertainty / variational mode decomposition / model predictive control / electric load dispatching

引用本文

导出引用
余洋, 温波, 王紫阳, 米增强, 袁玉宝, 常生强. 基于VMD和双模EMPC的含不确定源荷虚拟电厂优化调度[J]. 太阳能学报. 2023, 44(8): 130-138 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0516
Yu Yang, Wen Bo, Wang Ziyang, Mi Zengqiang, Yuan Yubao, Chang Shengqiang. OPTIMAL SCHEDULING OF VIRTUAL POWER PLANT WITH UNCERTAIN SOURCES AND LOADS BASED ON VMD AND DUAL-MODE EMPC[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 130-138 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0516
中图分类号: TM743   

参考文献

[1] 刘吉臻, 李明扬, 房方, 等. 虚拟发电厂研究综述[J]. 中国电机工程学报, 2014, 34(29): 5103-5111.
LIU J Z, LI M Y, FANG F, et al.Review on virtual power plants[J]. Proceedings of the CSEE, 2014, 34(29): 5103-5111.
[2] 刘井军, 刘涛, 周旭, 等. 含不确定源荷虚拟电厂参与需求响应优化控制方法[J]. 电力系统及其自动化学报, 2021, 33(4): 84-89.
LIU J J, LIU T, ZHOU X, et al.VPP demand response control method considering uncertainties in source and load[J]. Proceedings of the CSU-EPSA, 2021, 33(4): 84-89.
[3] 韩晓娟, 田春光, 程成, 等. 基于经验模态分解的混合储能系统功率分配方法[J]. 太阳能学报, 2014, 35(10): 1889-1896.
HAN X J, TIAN C G, CHENG C, et al.Power allocation method of hybrid energy storage system based on empirical mode decomposition[J]. Acta enerigae solaris sinica, 2014, 35(10): 1889-1896.
[4] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta enerigae solaris sinica, 2021, 42(7): 290-296.
[5] 王育飞, 王成龙, 李盟盟, 等. 基于自适应小波包分解的混合储能平抑高渗透率光伏社区电网电压波动方法[J]. 太阳能学报, 2020, 41(9): 78-85.
WANG Y F, WANG C L, LI M M, et al.Stabilize voltage fluctuation of community grid caused by high permeability photovoltaics based on self-adaption wavelet packet decomposition[J]. Acta enerigae solaris sinica, 2020, 41(9): 78-85.
[6] 颜晨煜, 樊艳芳, 姚波. 采用自适应变分模态分解的混合储能平滑光伏出力波动控制策略[J]. 高电压技术, 2019, 45(6): 1898-1906.
YAN C Y, FAN Y F, YAO B.Strategy for smoothing photovoltaic power fluctuation of hybrid energy storage system using self-adaptive variational mode decomposition[J]. High voltage engineering, 2019, 45(6): 1898-1906.
[7] 程志浩. 混合储能系统平抑光伏微电网功率波动策略研究[D]. 武汉: 湖北工业大学, 2020.
CHENG Z H.Research on power fluctuation control strategy of hybrid energy storage system in photovoltaic micro grid[D]. Wuhan: Hubei University of Technology, 2020.
[8] 钱峰, 张先捷, 刘俊磊, 等. 基于VMD技术与混合储能策略的风电并网控制方法[J]. 武汉大学学报(工学版), 2021, 54(4): 354-360, 374.
QIAN F, ZHANG X J, LIU J L, et al.Control method of wind power grid connection based on variational mode decomposition technology and hybrid energy storage strategy[J]. Engineering Journal of Wuhan University(engineering edition), 2021, 54(4): 354-360, 374.
[9] 黎静华, 文劲宇, 潘毅, 等. 面向新能源并网的电力系统鲁棒调度模式[J]. 电力系统保护与控制, 2015, 43(22): 47-54.
LI J H, WEN J Y, PAN Y, et al.Robust dispatching mode of electrical power system to cope with renewable energy power[J]. Power system protection and control, 2015, 43(22): 47-54.
[10] PETROLLESE M, VALVERDE L, COCCO D, et al.Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid[J]. Applied energy, 2016, 166(15): 96-106.
[11] 张中丹, 吕金历, 赵宇洋, 等. 基于双层MPC的多源孤岛微网经济运行控制策略[J]. 电力系统保护与控制, 2019, 47(7): 168-174.
ZHANG Z D, LYU J L, ZHAO Y Y, et al.Multi-source island microgrid economic operation control strategy based on double-layer MPC[J]. Power system protection and control, 2019, 47(7): 168-174.
[12] JIA Y B, DONG Z Y, SUN C Y, et al.Cooperation-based distributed economic MPC for economic load dispatch and load frequency control of interconnected power systems[J]. IEEE transactions on power systems, 2019, 34(5): 3964-3966.
[13] ZHANG X N, BAO J, WANG R G, et al.Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage[J]. Renewable energy, 2017, 100: 18-34.
[14] 孙乐平, 韩帅, 吴宛潞, 等. 基于经济模型预测控制的多虚拟电厂两阶段协调优化调度[J]. 储能科学与技术, 2021, 10(5): 1845-1853.
SUN L P, HAN S, WU W L, et al.Coordinated optimal scheduling of multiple virtual power plants in multiple time scales based on economic model predictive control[J]. Energy storage science and technology, 2021, 10(5): 1845-1853.
[15] 李鑫, 王娟, 邱亚, 等. 基于VMD的混合储能容量优化配置[J]. 太阳能学报, 2022, 43(2): 88-96.
LI X, WANG J, QIU Y, et al.Optimal allocation of hybrid energy storage capacity based on variational mode decomposition[J]. Acta enerigae solaris sinica, 2022, 43(2): 88-96.
[16] 滕德云, 滕欢, 潘晨, 等. 基于鲸鱼优化算法的无功优化调度[J]. 电测与仪表, 2018, 55(24): 51-58.
TENG D Y, TENG H, PAN C, et al.Reactive power optimal dispatch based on whale optimization algorithm[J]. Electrical measurement and instrumentation, 2018, 55(24): 51-58.
[17] 朱丽莉, 杨志鹏, 袁华. 粒子群优化算法分析及研究进展[J]. 计算机工程与应用, 2007, 13(18): 24-27.
ZHU L L, YANG Z P, YUAN H.Analysis and development of particle swarm optimization[J]. Computer engineering and applications, 2007, 13(18): 24-27.
[18] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.
TANG G J, WANG X L.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81.
[19] 周静雷, 颜婷. 应用变分模态分解及能量熵的扬声器异常声分类[J]. 声学学报, 2021, 46(2): 263-270.
ZHOU J L, YAN T.Loudspeaker abnormal sound classification using variational mode decomposition and energy entropy[J]. Acta acustica, 2021, 46(2): 263-270.
[20] 何正友, 陈小勤. 基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J]. 中国电机工程学报, 2006, 26(10): 33-39.
HE Z Y, CHEN X Q.A study of electric power system transient signals identification method based on multi-scales energy statistic and wavelet energy entropy[J]. Proceedings of the CSEE, 2006, 26(10): 33-39.
[21] HE D F, HUANG H, CHEN Q X.Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability[J]. Journal of the Franklin Institute, 2014, 351(6): 3405-3423.
[22] 罗翼婷, 杨洪明, 牛犇, 等. 考虑多风能预测场景的虚拟电厂日内滚动柔性优化调度方法[J]. 电力系统保护与控制, 2020, 48(2): 51-59.
LUO Y T, YANG H M, NIU B, et al.Day-ahead flexible rolling optimization dispatch of virtual power plant based on multi-wind forecasting results[J]. Power system protection and control, 2020, 48(2): 51-59.

基金

国家重点研发计划(2018YFE0122200); 国家自然科学基金(52077078); 河北省智能电网配用电技术创新中心开放课题(20200803)

PDF(1780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/