大规模光伏开发对局地气候生态影响研究

郑隽卿, 罗勇, 常蕊, 高晓清

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 253-265.

PDF(1237 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1237 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 253-265. DOI: 10.19912/j.0254-0096.tynxb.2022-0530

大规模光伏开发对局地气候生态影响研究

  • 郑隽卿1,2, 罗勇1,2, 常蕊3, 高晓清4
作者信息 +

STUDY ON IMPACT OF LARGE-SCALED PHOTOVOLTAIC DEVELOPMENT ON LOCAL CLIMATE AND ECOSYSTEM

  • Zheng Junqing1,2, Luo Yong1,2, Chang Rui3, Gao Xiaoqing4
Author information +
文章历史 +

摘要

光伏组件的大范围铺设改变了局地下垫面结构和性质,干扰了局地生物群落的演替,对局地气候和生态的影响受到广泛关注。这一科学问题为气候生态友好型光伏电站设计规划和可再生能源绿色可持续发展提供重要支撑。该文对已有的野外观测和数值模拟研究方法进行归纳总结,发现大规模集中式光伏开发对局地辐射、温度、湿度和风速产生了明显影响,通过增加光伏电站内生物多样性,改变植被生长状况和土壤理化性质等,总体上有利于生态脆弱地区防风固沙和水土保持,但研究成果具有明显的局地特征差异。辐射平衡和能量-水循环过程的改变可给出部分机理解释,但还需加强不同生态系统下的集中式光伏电站和城市分布式光伏的观测,深入研究光伏组件的光电转化效率等关键物理参数和局地蒸散发等关键过程的重要作用。光伏电站的建设运行,应充分考虑太阳能资源开发利用的“附加”生态效益,发挥其对荒漠化治理、脆弱生态修复和土壤污染物控制等的综合作用。

Abstract

The large-scale implementation of solar photovoltaics (PV) changes the types and characteristics of the underlying surface and gradually changes local ecological succession. Their impact on local climate and ecosystem has been widely studied in recent years. This scientific question is the important foundation for designing climate-ecosystem-friendly PV stations and developing sustainable renewable energy. This paper summarizes the existing research methods including field observation and numerical simulation, and the results show that the implementation of PV significantly impacted local radiation, temperature, humidity, and wind speed. By increasing the biodiversity, changing the growth of the vegetation, as well as changing the physical and chemical properties of soil in the PV station, large-scale implementation of PV will protect the ecologically fragile area from soil erosion, and the local ecosystem will benefit from windbreak and sand fixation. However, the existing studies are localized. The principle of these changes can be partly explained by the changes in radiation balance and the water-energy cycle process. Further observational studies about large-scale PV stations and urban PV systems should be explored to reveal the critical role of factors and processes such as conversion efficiency and evapotranspiration. The payoff of ecological benefits during the construction and operation of PV stations should be valued to prevent desertification, ecological damage, and soil pollution.

关键词

光伏组件 / 太阳辐射 / 能量平衡 / 气候影响 / 生态影响

Key words

PV modules / solar radiation / energy balance / climate impact / ecosystem impact

引用本文

导出引用
郑隽卿, 罗勇, 常蕊, 高晓清. 大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报. 2023, 44(8): 253-265 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0530
Zheng Junqing, Luo Yong, Chang Rui, Gao Xiaoqing. STUDY ON IMPACT OF LARGE-SCALED PHOTOVOLTAIC DEVELOPMENT ON LOCAL CLIMATE AND ECOSYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 253-265 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0530
中图分类号: P42    X171.4   

参考文献

[1] IPCC. IPCC special report on renewable energy sources and climate change mitigation[M]. Cambridge: Cambridge University Press, 2011: 337.
[2] IEA. Renewables information:overview[EB/OL].https://www.iea.org/reports/renewables-information-overview.
[3] IRENA. Renewable capacity statistics 2022[R]. 2022.
[4] 国家能源局. 国家能源局2022年一季度网上新闻发布会文字实录[EB/OL]. http://www.nea.gov.cn/2022-01/28/c_1310445390.htm.
China National Energy Administration. Transcript of China National Energy Administration’s Q1 2022 Online Press Conference[EB/OL]. http://www.nea.gov.cn/2022-01/28/c_1310445390.htm.
[5] 国家能源局. 国家能源局发布2021年全国电力工业统计数据[EB/OL]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
China National Energy Administration. National electricity industry statistics for 2021 released by China National Energy Administration[EB/OL]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
[6] 俞文政, 朱梦悦, 潘进军, 等. 太阳能资源光伏利用驱动机制研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(5): 66-70.
YU W Z, ZHU M Y, PAN J J, et al.Driving mechanisms of solar photovoltaic utilization[J]. Journal of Kunming University of Science and Technology(natural science edition),2015, 40(5): 66-70.
[7] PEHNT M.Dynamic life cycle assessment (LCA) of renewable energy technologies[J]. Renewable energy, 2006, 31(1): 55-71.
[8] TURNEY D, FTHENAKIS V.Environmental impacts from the installation and operation of large-scale solar power plants[J]. Renewable and sustainable energy reviews, 2011, 15(6): 3261-3270.
[9] MASSON V, BONHOMME M, SALAGNAC J L, et al.Solar panels reduce both global warming and urban heat island[J]. Frontiers in environmental science, 2014, 2: 14.
[10] HU A X, LEVIS S, MEEHL G A, et al.Impact of solar panels on global climate[J]. Nature climate change, 2016, 6(3): 290-294.
[11] CUBI E, ZIBIN N F, THOMPSON S J, et al.Sustainability of rooftop technologies in cold climates: comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels[J]. Journal of industrial ecology, 2016, 20(2): 249-262.
[12] LI S, WEIGAND J, GANGULY S.The potential for climate impacts from widespread deployment of utility-scale solar energy installations: an environmental remote sensing perspective[J]. Journal of remote sensing & GIS, 2017, 6(1): 1000190.
[13] 李俊峰, 王斯成, 张敏吉, 等. 中国光伏发展报告·2007[M]. 北京: 中国环境科学出版社, 2007: 2.
LI J F, WANG S C, ZHANG M J, et al.China solar PV report 2007[M]. Beijing: China Environmental Science Press, 2007: 2.
[14] HERNANDEZ R R, HOFFACKER M K, FIELD C B.Land-use efficiency of big solar[J]. Environmental science & technology, 2014, 48(2): 1315-1323.
[15] 王祺, 尚雯, 常兆丰, 等. 沙漠戈壁光伏产业太阳能利用率研究: 以甘肃河西走廊为例[J]. 太阳能学报, 2020, 41(11): 126-134.
WANG Q, SHANG W, CHANG Z F, et al.Study on solar energy utilization of photovoltaic industry in Gobi and desert regions: take Gansu Hexi Corridor as an example[J]. Acta energiae solaris sinica, 2020, 41(11): 126-134.
[16] NEMET G F.Net radiative forcing from widespread deployment of photovoltaics[J]. Environmental science & technology, 2009, 43(6): 2173-2178.
[17] 卢霞. 荒漠戈壁区光伏电站建设的环境效应分析: 以酒泉市东洞滩百万千瓦光伏示范基地为例[D]. 兰州: 兰州大学, 2013.
LU X.The environmental effect analysis of PV power plant construction in desert gobbi: take Dongdongtan million kilowatt solar power demonstration base, Jiuquan City as an example[D]. Lanzhou: Lanzhou University, 2013.
[18] ARSLANOGLU N, YIGIT A, EKER B S.Investigation of wind speed effect on different mounted PV systems using satellite data[J]. Environmental progress & sustainable energy, 2020, 39(4): e13397.
[19] BARRON-GAFFORD G A, MINOR R L, ALLEN N A, et al. The photovoltaic heat island effect: larger solar power plants increase local temperatures[J]. Scientific reports, 2016, 6: 35070.
[20] BROADBENT A M, KRAYENHOFF E S, GEORGESCU M, et al.The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance[J]. Journal of applied meteorology and climatology, 2019, 58(5): 989-1006.
[21] 杨丽薇, 高晓清, 吕芳, 等. 光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9): 2160-2166.
YANG L W, GAO X Q, LYU F, et al.Study on the impact of large solar farm on radiation field in desert areas of Golmud[J]. Acta energiae solaris sinica, 2015, 36(9): 2160-2166.
[22] 高晓清, 杨丽薇, 吕芳, 等. 光伏电站对格尔木荒漠地区土壤温度的影响研究[J]. 太阳能学报, 2016, 37(6):1439-1445.
GAO X Q, YANG L W, LYU F, et al.Effect of PV farm on soil temperature in Golmud Desert area[J]. Acta energiae solaris sinica, 2016, 37(6): 1439-1445.
[23] 高晓清, 杨丽薇, 吕芳, 等. 光伏电站对格尔木荒漠地区空气温湿度影响的观测研究[J]. 太阳能学报, 2016, 37(11): 2909-2915.
GAO X Q, YANG L W, LYU F, et al.Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of Golmud[J]. Acta energiae solaris sinica, 2016, 37(11): 2909-2915.
[24] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3):15-21.
YIN D Y, MA L, QU J J, et al.Effect of large photovoltaic power station on microclimate of desert region in Gonghe Basin[J]. Bulletin of soil and water conservation, 2017, 37(3): 15-21.
[25] CHANG R, SHEN Y B, LUO Y, et al.Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China[J]. Renewable energy, 2018, 118: 131-137.
[26] WU W, YUE S J, ZHOU X D, et al.Observational study on the impact of large-scale photovoltaic development in deserts on local air temperature and humidity[J]. Sustainability, 2020, 12(8): 3403.
[27] 秦一凡. 大型荒漠光伏开发对局地微气候-土壤-植被的影响研究[D]. 西安: 西安理工大学, 2021.
QIN Y F.Reaserch on the impact of large-scale desert photovoltaic development on local microclimate, soil and vegetation[D]. Xi’an: Xi’an University of Technology, 2021.
[28] YUE S J, GUO M J, ZHOU P H, et al.Effects of photovoltaic panels on soil temperature and moisture in desert areas[J]. Environmental science and pollution research, 2021, 28(14): 17506-17518.
[29] YUE S J, WU W, ZHOU X D, et al.The influence of photovoltaic panels on soil temperature in the Gonghe desert area[J]. Environmental engineering science, 2021, 38(9): 910-920.
[30] JIANG J X, GAO X Q, CHEN B L.The impact of utility-scale photovoltaics plant on near surface turbulence characteristics in Gobi areas[J]. Atmosphere, 2020, 12(1): 18.
[31] JIANG J X, GAO X Q, LYU Q Q, et al.Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas[J]. Renewable energy, 2021, 174: 157-169.
[32] 赵延岩, 李振朝, 高晓清, 等. 戈壁大型光伏电站夏季晴天地表通量特征[J]. 太阳能学报, 2021, 42(5): 138-144.
ZHAO Y Y, LI Z C, GAO X Q, et al.Surface flux characteristics of large-scale photovoltaic power station in Gobi on sunny days in summer[J]. Acta energiae solaris sinica, 2021, 42(5): 138-144.
[33] 常兆丰, 刘世增, 詹科杰,等. 沙漠光伏电场的光伏转换及能量传递效应: 以甘肃古浪振发光伏电场为例[J]. 生态经济, 2020, 36(11): 188-194.
CHANG Z F, LIU S Z, ZHAN K J, et al.Photovoltaic conversion and energy transfer effect of desert photovoltaic field: a case study of Gulang Zhenfa photovoltaic field of Gansu[J]. Ecological economy, 2020, 36(11): 188-194.
[34] ARMSTRONG A, OSTLE N J, WHITAKER J.Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental research letters, 2016, 11(7): 074016.
[35] 杜慧, 孙芳. 初步研究光伏电站运营期对植被的影响[J]. 环境与发展, 2017, 29(8): 30-31.
DU H, SUN F.Preliminary study on the impact of photovoltaic power plant operation on vegetation[J]. Environment and development, 2017, 29(8): 30-31.
[36] 翟波, 高永, 党晓宏, 等. 光伏电板对羊草群落特征及多样性的影响[J]. 生态学杂志, 2018, 37(8): 2237-2243.
ZHAI B, GAO Y, DANG X H, et al.Effects of photovoltaic panels on the characteristics and diversity of Leymus chinensis community[J]. Chinese journal of ecology, 2018, 37(8): 2237-2243.
[37] 王涛, 王得祥, 郭廷栋, 等. 光伏电站建设对土壤和植被的影响[J]. 水土保持研究, 2016, 23(3): 90-94.
WANG T, WANG D X, GUO T D, et al.The impact of photovoltaic power construction on soil and vegetation[J]. Research of soil and water conservation, 2016, 23(3): 90-94.
[38] 刘怡. 光伏电站对晋北两种典型退化生态系统的影响[D]. 太原: 山西财经大学, 2020.
LIU Y.The influence of photovoltaic power station on two typical degraded ecosystems in north of Shanxi[D]. Taiyuan: Shanxi University of Finance and Economics, 2020.
[39] 周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2): 132-138.
ZHOU M R, WANG X J.Influence of photovoltaic power station engineering on soil and vegetation: taking the Gobi Desert Area in the Hexi Corridor of Gansu as an example[J]. Science of soil and water conservation, 2019, 17(2): 132-138.
[40] 王祺, 王方琳, 刘淑娟, 等. 光伏产业类比荒漠植被利用太阳辐射的时空变异特征及生态意义: 以甘肃河西走廊为例[J]. 生态经济, 2020, 36(1): 79-85.
WANG Q, WANG F L, LIU S J, et al.The spatial-temporal variation characteristics and ecological significance of solar radiation utilization by photovoltaic industry analogy to desert vegetation: taking Gansu Hexi Corridor as an example[J]. Ecological economy, 2020, 36(1): 79-85.
[41] 张芝萍, 尚雯, 王祺, 等. 河西走廊荒漠区光伏电站植物群落物种多样性研究[J]. 西北林学院学报, 2020, 35(2): 190-196, 212.
ZHANG Z P, SHANG W, WANG Q, et al.Biodiversity of herbaceous species under large photovoltaic(PV) power stations in desert region of Hexi Corridor[J]. Journal of Northwest Forestry University, 2020, 35(2): 190-196, 212.
[42] CHOI C S, CAGLE A E, MACKNICK J, et al.Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in environmental science, 2020, 8: 140.
[43] MOSCATELLI M C, MARABOTTINI R, MASSACCESI L, et al.Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area[J]. Geoderma regional, 2022, 29: e00500.
[44] GENCHI Y, ISHISAKI M, OHASHI Y, et al.Impacts of large-scale photovoltaic panel installation on the heat island effect in Tokyo[C]//Fifth Conference on the Urban Climate, Tokyo, Japan, 2003.
[45] PHAM J V, BANIASSADI A, BROWN K E, et al.Comparing photovoltaic and reflective shade surfaces in the urban environment: effects on surface sensible heat flux and pedestrian thermal comfort[J]. Urban climate, 2019, 29: 100500.
[46] FAN C X, HUANG X L.Satellite-observed changes of surface spectral reflectances due to solar farming and the implication for radiation budget[J]. Environmental research letters, 2020, 15(11): 114047.
[47] MATAI K, MANCHANDA S.LST mapping of SPV to gauge their influence on near-surface air temperature of new Delhi city[C]//The First International Conference on Green Building and Sustainable Engineering, Kochi, India, 2018.
[48] ZHANG X H, XU M.Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques[J]. Remote sensing, 2020, 12(11):1825.
[49] LI G Q, HERNANDEZ R R, BLACKBURN G A, et al.Ground-mounted photovoltaic solar parks promote land surface cool islands in arid ecosystems[J]. Renewable and sustainable energy transition, 2021, 1: 100008.
[50] LI Y, KALNAY E, MOTESHARREI S, et al.Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science, 2018, 361(6406): 1019-1022.
[51] LU Z Y, ZHANG Q, MILLER P A, et al. Impacts of large-scale Sahara solar farms on global climate and vegetation cover[J]. Geophysical research letters, 2021, 48(2): e2020GL090789.
[52] NGUYEN K C, KATZFEY J J, RIEDL J, et al.Potential impacts of solar arrays on regional climate and on array efficiency[J]. International journal of climatology, 2017, 37(11): 4053-4064.
[53] MILLSTEIN D, MENON S.Regional climate consequences of large-scale cool roof and photovoltaic array deployment[J]. Environmental research letters, 2011, 6(3): 034001.
[54] 汪付星. 大面积光伏铺设对中国气候的潜在影响[D]. 北京: 清华大学, 2014.
WANG F X.The potential climate impact of very-large-scale photovoltaic array in China[D]. Beijing: Tsinghua University, 2014.
[55] CORTES A, MURASHITA Y, MATSUO T, et al.Numerical evaluation of the effect of photovoltaic cell installation on urban thermal environment[J]. Sustainable cities and society, 2015, 19: 250-258.
[56] SALAMANCA F, GEORGESCU M, MAHALOV A, et al.Citywide impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand[J]. Boundary-layer meteorology, 2016, 161(1): 203-221.
[57] 郝晓龙, 王咏薇, 胡凝, 等. 太阳能光伏屋顶对城市热环境及能源供需影响的模拟[J]. 气象学报, 2020, 78(2): 301-316.
HAO X L, WANG Y W, HU N, et al.Simulation of the influence of solar photovoltaic roof on urban thermal environment and energy supply and demand[J]. Acta meteorologica sinica, 2020, 78(2): 301-316.
[58] ZONATO A, MARTILLI A, GUTIERREZ E, et al. Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption[J]. Journal of geophysical research: atmospheres, 2021, 126(21): e2021JD035002.
[59] TAHA H.The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas[J]. Solar energy, 2013, 91: 358-367.
[60] FTHENAKIS V, YU Y H.Analysis of the potential for a heat island effect in large solar farms[C]//2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 2014.
[61] HEUSINGER J, BROADBENT A M, SAILOR D J, et al.Introduction, evaluation and application of an energy balance model for photovoltaic modules[J]. Solar energy, 2020, 195: 382-395.
[62] HEUSINGER J, BROADBENT A M, KRAYENHOFF E S, et al.Adaptation of a photovoltaic energy balance model for rooftop applications[J]. Building and environment, 2021, 192: 107628.
[63] CHANG R, LUO Y, ZHU R.Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China[J]. Renewable energy, 2020, 145: 478-489.
[64] WU C D, LIU H, YU Y, et al.Ecohydrological effects of photovoltaic solar farms on soil microclimates and moisture regimes in arid Northwest China: a modeling study[J]. Science of the total environment, 2022, 802: 149946.
[65] YANG L W, GAO X Q, LYU F, et al.Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar energy, 2017, 144: 244-253.
[66] LI Z C, ZHAO Y Y, LUO Y, et al.A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi Desert[J]. Renewable energy, 2022, 182: 764-771.
[67] LI Z C, ZHAO Y Y, YANG J X, et al.A comparative study on surface energy flux characteristics of photovoltaic power station in Gobi in summer[J]. Theoretical and applied climatology, 2022, 148(3/4): 1239-1247.
[68] TIAN W, WANG Y P, XIE Y Y, et al.Effect of building integrated photovoltaics on microclimate of urban canopy layer[J]. Building and environment, 2007, 42(5):1891-1901.
[69] 赵鹏宇, 高永, 陈曦, 等. 沙漠光伏电站对空气温湿度影响研究[J]. 西部资源, 2016(3): 125-128.
ZHAO P Y, GAO Y, CHEN X, et al.Study on the influence of desert photovolataic power station on air temperature and humidity[J]. Western resources, 2016(3): 125-128.
[70] 翟波, 党晓宏, 陈曦, 等. 内蒙古典型草原区光伏电板降水再分配与土壤水分蒸散分异规律[J]. 中国农业大学学报, 2020, 25(9): 144-155.
ZHAI B, DANG X H, CHEN X, et al.Difference regularity of precipitation redistribution and soil water evapotranspiration in photovoltaic panels in typical steppe areas of Inner Mongolia[J]. Journal of China Agricultural University, 2020, 25(9): 144-155.
[71] 王祯仪, 汪季, 高永, 等. 光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019, 39(1): 191-196.
WANG Z Y, WANG J, GAO Y, et al.Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of soil and water conservation, 2019, 39(1): 191-196.
[72] 赵鹏宇. 光伏电板对地表土壤颗粒及小气候的影响: 以磴口县光伏电站为例[D]. 呼和浩特: 内蒙古农业大学, 2016.
ZHAO P Y.Effect of photovoltaic panels on the surface of soil particles and microclimate: taking Dengkou photovoltaic power station as an example[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
[73] 唐国栋, 蒙仲举, 高永, 等. 沙区光伏设施干扰下近地表输沙通量分析[J]. 干旱区研究, 2020, 37(3):739-748.
TANG G D, MENG Z J, GAO Y, et al.Near-surface sand-dust flux under the interference of photovoltaic facilities in sandy areas[J]. Arid zone research, 2020, 37(3):739-748.
[74] TANG G D, MENG Z J, GAO Y, et al.Wind-sand movement characteristics and erosion mechanism of a solar photovoltaic array in the middle of the Hobq Desert, Northwestern China[J]. Journal of mountain science, 2021, 18(5): 1340-1351.
[75] 袁方, 张振师, 卜崇峰, 等. 毛乌素沙地光伏电站项目区风速流场及风蚀防治措施[J]. 中国沙漠, 2016, 36(2): 287-294.
YUAN F, ZHANG Z S, BU C F, et al.Wind speed flow field and wind erosion control measures at photovoltaic power plant project area in Mu Us sandy land[J]. Journal of desert research, 2016, 36(2): 287-294.
[76] 陈曦. 沙区光伏电站对气固两相流及地表土壤粒径的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
CHEN X.Research on impact effect of gas-soil two-phase flow and soil mechanical composition to photovoltaic power station[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[77] 王方琳, 王祺, 刘世增, 等. 沙区光伏产业生态效应分析[J]. 自然科学, 2020, 8(3): 136-141.
WANG F L, WANG Q, LIU S Z, et al.Application of photovoltaic power generation in the desert and Gobi and analysis of its ecological benefits[J]. Open journal of natural science, 2020, 8(3): 136-141.
[78] 刘世增, 常兆丰, 朱淑娟, 等. 沙漠戈壁光伏电厂的生态学意义[J]. 生态经济, 2016, 32(2): 177-181.
LIU S Z, CHANG Z F, ZHU S J, et al.Ecological significance of photovoltaic power plants in the desert and Gobi[J]. Ecological economy, 2016, 32(2): 177-181.
[79] 赵名彦, 李芳然, 崔利强, 等. 生态脆弱地区光伏电站建设的环境效应分析[J]. 科技创新与应用, 2015(26):22-23.
ZHAO M Y, LI F R, CUI L Q, et al.Analysis of environmental effects of photovoltaic power station construction in ecologically fragile areas[J]. Technology innovation and application, 2015(26): 22-23.
[80] 常兆丰, 刘世增, 王祺,等. 沙漠、戈壁光伏产业防沙治沙的生态功能: 以甘肃河西走廊为例[J]. 生态经济, 2018, 34(8): 199-202, 208.
CHANG Z F, LIU S Z, WANG Q, et al.Ecological function of PV industry for sand control in desert and Gobi: a case study of Hexi Corridor, Gansu[J]. Ecological economy, 2018, 34(8): 199-202,208.
[81] 周波, 柴亚凡. 戈壁荒漠区风电及光伏发电工程水土流失特征的对比分析[J]. 水土保持通报, 2014, 34(6):140-145.
ZHOU B, CHAI Y F.Characteristics of soil and water loss in wind power and photovoltaic power generation projects construction in Gobi Desert area[J]. Bulletin of soil and water conservation, 2014, 34(6): 140-145.
[82] DHAR A, NAETH M A, JENNINGS P D, et al.Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems[J]. Science of the total environment, 2020, 718: 134602.
[83] 崔永琴, 冯起, 孙家欢, 等. 西北地区光伏电站植被恢复模式研究综述[J]. 水土保持通报, 2017, 37(3): 200-203.
CUI Y Q, FENG Q, SUN J H, et al.A review of revegetation patterns of photovoltaic plant in northwest China[J]. Bulletin of soil and water conservation, 2017, 37(3): 200-203.
[84] LEAL W, AZUL A, BRANGLI L, et al.Zero hunger, encyclopedia of the UN sustainable development goals[M]. Springer, 2020: 810-823.
[85] WU Z Y, HOU A P, CHANG C, et al.Environmental impacts of large-scale CSP plants in north western China[J]. Environmental science: processes & impacts, 2014, 16(10): 2432-2441.
[86] 范鸿磊. 光伏发电项目水土保持监测实施及结果分析[J]. 山西水土保持科技, 2018(4): 41-43.
FAN H L.Analysis on soil and water conservation monitoring of photovoltaic power generation project[J]. Soil and water conservation science and technology in Shanxi, 2018(4): 41-43.
[87] 姬保雄. 米脂县光伏发电项目水土保持方案监测与评价[J]. 陕西水利, 2019(7): 126-127, 131.
JI B X.Monitoring and evaluation of soil and water conservation scheme for photovoltaic power generation project in Mizhi county[J]. Shaanxi water resources, 2019(7):126-127, 131.
[88] 杨延哲. 人工培育生物结皮在毛乌素沙地光伏电站施工迹地的风蚀防治研究[D]. 咸阳:中国科学院大学, 2016.
YANG Y Z.Experimental study on wind erosion control of artificial cultivation biocrusts in the photovoltaic power plant construction slash in Mu Us Sandland,China[D]. Xianyang: The University of Chinese Academy of Sciences, 2016.
[89] 苑森朋. 毛乌素沙地光伏项目施工迹地风蚀防治的植物措施配置与效益分析[D]. 咸阳: 西北农林科技大学, 2016.
YUAN S P.The plant measures and benefit analysis of wind erosion control in photovoltaic project construction site in Mu Us sandy land[D]. Xianyang: Northwest Agriculture and Forestry University, 2016.
[90] 苑森朋, 张振师, 党廷辉, 等. 毛乌素沙地光伏电站3种植物措施生长发育状况及其生态功能比较[J]. 水土保持研究, 2018, 25(2): 235-239.
YUAN S P, ZHANG Z S, DANG T H, et al.Comparative study of growth status of three plant measures and its ecological functions in photovoltaic power station of Mu Us sandy land[J]. Research of soil and water conservation, 2018, 25(2): 235-239.
[91] 陈亭亭, 孙士浩, 王正莉, 等. 围栏封育对植被群落特征影响的研究进展[J]. 农技服务, 2020, 37(9): 42-43.
CHEN T T, SUN S H, WANG Z L, et al.Research progress on the effect of enclosure on vegetation community characteristics[J]. Agricultural technology service, 2020, 37(9): 42-43.
[92] BATTANY M C, GRISMER M E.Rainfall runoff and erosion in Napa Valley vineyards: effects of slope, cover and surface roughness characteristics[J]. Hydrological processes, 2000, 14(7): 1289-1304.
[93] FTHENAKIS V, BLUNDEN J, GREEN T, et al.Large photovoltaic power plants: wildlife impacts and benefits[C]//2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 2011.
[94] CARIDAD P, MONICA O, JOSE A, et al.Revegetation in solar photovoltaic farms in Mediterranean areas[J]. Fresenius environmental bulletin, 2013, 22(12a):3680-3688.
[95] ARMSTRONG A, WALDRON S, WHITAKER J, et al.Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate[J]. Global change biology, 2014, 20(6):1699-1706.
[96] OTHMAN N F, YA'ACOB M E, ABDUL-RAHIM A S, et al. Embracing new agriculture commodity through integration of Java Tea as high value herbal crops in solar PV farms[J]. Journal of cleaner production, 2015, 91: 71-77.
[97] 丁洋. 光伏架下人工草地建植初探[D]. 呼和浩特: 内蒙古农业大学, 2017.
DING Y.A preliminary study on the construction of artificial grassland under photovoltaic frame[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
[98] 赵晶, 郝孟婕, 王清宇, 等. 不同植被恢复模式下光伏电站土壤有机碳储量分布特征[J]. 浙江农林大学学报, 2021, 38(5): 1033-1039.
ZHAO J, HAO M J, WANG Q Y, et al.Distribution characteristics of soil organic carbon storage in photovoltaic power station under different vegetation restoration modes[J]. Journal of Zhejiang Agricultural and Forest University, 2021, 38(5): 1033-1039.
[99] 刘雅婧. 光伏电站对典型草原退化指示植物化感作用的影响[D]. 呼和浩特: 内蒙古农业大学, 2020.
LIU Y J.The influence of photovoltaic power station on allelopathy of typical grassland degradation indicator plant [D]. Hohhot: Inner Mongolia Agricultural University, 2020.
[100] 刘建, 庞真真. “农地种电”型光伏电站可种植区域光温环境参数研究[J]. 农业工程技术, 2016, 36(25): 28-32.
LIU J, PANG Z Z.Study on light, temperature and environmental parameters of planting area of‘farmland planting electricity’photovoltaic power station[J]. Agriculture engineering technology, 2016, 36(25): 28-32.
[101] HERNANDEZ R R, EASTER S B, MURPHY-MARISCAL M L, et al. Environmental impacts of utility-scale solar energy[J]. Renewable and sustainable energy reviews, 2014, 29: 766-779.
[102] 赵鹏宇, 高永, 党晓宏,等. 乌兰布和沙漠东北缘光伏电站表层土壤颗粒空间异质特征[J]. 内蒙古林业科技, 2016, 42(2): 11-14, 25.
ZHAO P Y, GAO Y, DANG X H, et al.Spatial heterogeneity of surface soil particles in photovoltaic power station in northeast Wulanbuhe desert[J]. Journal of Inner Mongolia forestry science and technology, 2016, 42(2): 11-14, 25.
[103] 杨世荣, 蒙仲举, 党晓宏, 等. 库布齐沙漠生态光伏电站不同覆盖类型下土壤粒度特征[J]. 水土保持研究, 2020, 27(1): 112-118.
YANG S R, MENG Z J, DANG X H, et al.Grain size characteristics of surface sediments of eco-photovoltaic power station in Kubuqi Desert[J]. Research of soil and water conservation, 2020, 27(1): 112-118.
[104] 赵晶, 关世羽, 张有新, 等. 植被恢复后光伏电站内土壤团聚体分布特征和稳定性研究[J]. 干旱区资源与环境, 2021, 35(11): 172-177.
ZHAO J, GUAN S Y, ZHANG Y X, et al.Distribution characteristics and stability changes of soil aggregates in photovoltaic power stations after vegetation restoration[J]. Journal of arid land resources and environment, 2021, 35(11): 172-177.
[105] 贾瑞庭. 沙区光伏电站不同植被恢复措施对土壤理化性质的影响[D]. 呼和浩特: 内蒙古农业大学, 2021.
JIA R T.Influence of different vegetation restoration measures of PV power station in sandy area on soil physical and chemical properties[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
[106] 宋威震. 光伏电站内土壤颗粒组成变化和碳分布研究[D]. 呼和浩特: 内蒙古农业大学, 2021.
SONG W Z.Change of soil particle composition and carbon distribution in photovoltaic power station[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
[107] SCHERBA A, SAILOR D J, ROSENSTIEL T N, et al.Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat of‘farmland planting electricity’photovoltaic power station flux into the urban environment[J]. Building and environment, 2011, 46(12): 2542-2551.
[108] FTHENAKIS V, KIM H C.Life-cycle uses of water in U.S. electricity generation[J]. Renewable and sustainable energy reviews, 2010, 14(7): 2039-2048.
[109] JISEA. Concentrating solar power and water issues in the U.S. southwest[M]. Springfield: The Joint Institute for Strategic Energy Analysis, 2015: 10.
[110] SATO K, SINHA S, KUMAR B, et al.Self cooling mechanism in photovoltaic cells and its impact on heat island effect from very large scale PV systems in deserts[J]. Journal of arid land studies, 2009, 19(1): 5-8.
[111] 中华人民共和国科学技术部. 对十三届全国人大三次会议第4799号建议的答复[EB/OL]. http://www.most.gov.cn/ xxgk/ xinxifenlei/ fdzdgknr/ jyta/ 202011/ t20201122_169489.html
The Ministry of Science and Technology of the People’s Republic of China. Reply to Recommendation No. 4799 of the Third Session of the 13th National People’s Congress[EB/OL].http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/ jyta/202011/t20201122_169489.html.

基金

国家重点研发计划(2018YFB1502802); 国家自然科学基金(42175191)

PDF(1237 KB)

Accesses

Citation

Detail

段落导航
相关文章

/