RESEARCH PROGRESS OF SOLID-STATE HYDROGEN STORAGE TEACHNOLOGY
Zhang Xiaofei1-4, Jiang Lijun1-4, Ye Jianhua1,4, Wu Yuanfang1,2, Guo Xiumei1,2, Li Zhinian1,2, Li Haiwen5
Author information+
1. National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China; 2. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China; 3. General Research Institute for Nonferrous Metals, Beijing 100088, China; 4. GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528051, China; 5. Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
The research progress of solid-state hydrogen storage technology is reviewed, including hydrogen storage materials, hydrogen storage devices and application status. Some hydrogen storage alloys have been successfully used in solid-state hydrogen storage devices. The high-capacity reversible hydrogen storage materials under mild hydrogen absorption and desorption conditions is the focus of current research and development. The optimized design of the hydrogen storage device effectively improves the rapid heat transfer characteristics and the safety performance. Hydrogen storage devices have been applied in the fields of distributed energy supply and motor vehicles. However, it is still necessary to further realize the coordination of rapid response, safety, reliability, and high hydrogen storage density of the hydrogen storage system.
Zhang Xiaofei, Jiang Lijun, Ye Jianhua, Wu Yuanfang, Guo Xiumei, Li Zhinian, Li Haiwen.
RESEARCH PROGRESS OF SOLID-STATE HYDROGEN STORAGE TEACHNOLOGY[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 345-354 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0536
中图分类号:
TK91
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUH M P, PARK H J, PRASAD T K, et al.Hydrogen storage in metal-organic frameworks[J]. Chemical reviews, 2012, 112(2): 782-835. [2] BROOM D P, WEBB C J, FANOURGAKIS G S, et al.Concepts for improving hydrogen storage in nanoporous materials[J]. International journal of hydrogen energy, 2019, 44(15): 7768-7779. [3] THOMAS K M.Hydrogen adsorption and storage on porous materials[J]. Catalysis today, 2007, 120(3-4): 389-398. [4] ZHAO X B, XIAO B, FLETCHER A J, et al.Hydrogen adsorption on functionalized nanoporous activated carbons[J]. Journal of physical chemistry B, 2005, 109(18): 8880-8888. [5] ZÜTTEL A. Materials for hydrogen storage[J]. Materials today, 2003, 6(9): 24-33. [6] MANDAL T K, GREGORY D H.Hydrogen storage materials: present scenarios and future directions[J]. Cheminform, 2009, 105(30): 21-54. [7] REILLY J J, WISWALL R H.Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J]. Inorganic chemistry, 1968, 7(11): 2254-2256. [8] PEBLER A, GULBRANSEN E.Equilibrium studies on the systems ZrCr2-H2, ZrV2-H2 and ZrMo2-H2 between 0 and 900 ℃[J]. AIME met soc trans, 1967, 239(10): 1593-1600. [9] ZIJLSTRA H, WESTENDORP F F.Influence of hydrogen on the magnetic properties of SmCo5[J]. Solid state communications, 1969, 7(12): 857-859. [10] BUSCHOW K H, VAN MAL H H. Phase relations and hydrogen absorption in the lanthanum-nickel system[J]. Journal of the less-common metals, 1972, 29(2): 203-210. [11] REILLY J J, WISWALL R H.The higher hydrides of vanadium and niobium[J]. Inorganic chemistry, 1970, 9(7): 1678-1682. [12] REILLY J J, WISWALL R H.Formation and Properties of Iron Titanium Hydride[J]. Inorganic chemistry, 1974, 13(1): 77-112. [13] ZALUSKA A, ZALUSKI L, STRÖM-OLSEN J O. Nanocrystalline magnesium for hydrogen storage[J]. Journal of alloys and compounds, 1999, 288(1): 217-225. [14] BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J]. Journal of alloys and compounds, 1997, 253-254: 1-9. [15] CHEN P, XIONG Z T, LUO J Z, et al.Interaction of hydrogen with metal nitrides and imides[J]. Nature, 2002, 420(6913): 302-304. [16] XIONG Z T, YONG C K, WU G T, et al.High-capacity hydrogen storage in lithium and sodium amidoboranes[J]. Nature materials, 2008, 7(2): 138-141. [17] RUSMAN N, DAHARI M.A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International journal of hydrogen energy, 2016, 41(28): 12108-12126. [18] PAN H, LIU Y, GAO M, et al.An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=3.15-3.80) hydrogen storage alloys[J]. Journal of alloys and compounds, 2003, 351(1-2): 228-234. [19] PRIGENT J, JOUBERT J M, GUPTA M.Modification of the hydrogenation properties of LaNi5 upon Ni substitution by Rh, Ir, Pt or Au[J]. Journal of alloys and compounds, 2012, 511(1): 95-100. [20] SHARMA V K, KUMAR E A.Effect of measurement parameters on thermodynamic properties of La-based metal hydrides[J]. International journal of hydrogen energy, 2014, 39(11): 5888-5898. [21] OGAWA H, IKOMA M, KAWANO H, et al.Metal hydride electrode for high energy density sealed nickel-metal hydride battery[J]. Journal of power sources, 1988, 12: 393-410. [22] WANG W, QIN R Y, WU R X, et al.A promising anode candidate for rechargeable nickel metal hydride power battery: an A5B19-type La-Sm-Nd-Mg-Ni-Al-based hydrogen storage alloy[J]. Journal of power sources, 2020, 465: 228-236. [23] LIU Y R, YUAN H P, GUO M, et al.Effect of Y element on cyclic stability of A2B7-type La-Y-Ni-based hydrogen storage alloy[J]. International journal of hydrogen energy, 2019, 44(39): 22064-22073. [24] CIRIC K D, KOCJAN A, GRADISEFE A, et al.A study on crystal structure, bonding and hydriding properties of Ti-Fe-Ni intermetallics-Behind substitution of iron by nickel[J]. International journal of hydrogen energy, 2012, 37(10): 8408-8417. [25] SANDROCK G D, GOODELL P D.Surface poisoning of LaNi5, FeTi and (Fe, Mn)Ti by O2, Co and H2O[J]. Journal of the less-common metals, 1980, 73(1): 161-168. [26] CHUNG H S, LEE J Y .Effect of partial substitution of Mn and Ni for Fe in FeTi on hydriding kinetics[J]. International journal of hydrogen energy, 1986, 11(5): 335-339. [27] QU H Q, DU J L, PU C H, et al.Effects of Co introduction on hydrogen storage properties of Ti-Fe-Mn alloys[J]. International journal of hydrogen energy, 2015, 40(6): 2729-2735. [28] JAIN P, GOSSELIN C, HUOT J.Effect of Zr, Ni and Zr7Ni10 alloy on hydrogen storage characteristics of TiFe alloy[J]. International journal of hydrogen energy, 2015, 40(47): 16921-16927. [29] CIRIC K D, KOCJAN A, GRADISEFE A, et al.A study on crystal structure, bonding and hydriding properties of Ti-Fe-Ni intermetallics-behind substitution of iron by nickel[J]. International journal of hydrogen energy, 2012, 37(10): 8408-8417. [30] IWAKURA C, KASUGA H, KIM I, et al.Effect of alloy composition on electrochemical properties of the Zr-based laves-phase hydrogen storage alloys[J]. Electrochimica acta, 1996, 41(17): 2691-2694. [31] YANG X W, LI J S, ZHANG T B, et al.Role of defect structure on hydrogenation properties of Zr0.9Ti0.1V2 alloy[J]. International journal of hydrogen energy, 2011, 36(15): 9318-9323. [32] PRINCIPI G, AGRESTI F, MADDALENA A, et al.The problem of solid state hydrogen storage[J]. Energy, 2009, 34(12): 2087-2091. [33] YU X B, XIA B J, WU Z, et al.Phase structure and hydrogen sorption performance of Ti-Mn-based alloys[J]. Materials science & engineering A, 2004, 373(1/2): 303-308. [34] IVANCHENKO V G, DEKHTYARENKO V A, PRYADKO T V.Hydrogen-sorption properties of (Ti, Zr)Mn2-x intermetallic alloy[J]. Powder metallurgy and metal ceramics, 2013, 52(5-6): 340-344. [35] 吴铸, 黄太仲, 黄铁生, 等. TiMn2储氢合金中部分Mn被取代后储氢性能的改善[J]. 稀有金属, 2003(1): 116-118. WU Z, HUANG T Z, HUANG T S, et al.Improvement of hydrogen storage performance by partial substitution of Mn in TiMn2 alloy[J]. Chinese journal of rare metals, 2003(1): 116-118. [36] 郭秀梅, 王树茂, 刘晓鹏, 等. 金属氢化物氢压缩机用AB2型Ti-Mn基储氢合金研究[J]. 金属功能材料, 2011, 18(4): 10-13. GUO X M, WANG S M, LIU X P, et al.Study on AB2- type Ti-Mn based hydrogen storage alloys for metal hydride hydrogen compressor[J]. Metallic functional materials, 2011, 18(4): 10-13. [37] CRIVELLO J, DENYS R V, DORNHEIM M, et al.Mg-based compounds for hydrogen and energy storage[J]. Applied physics A, 2016, 122(2): 85. [38] KALISVAART W P, HARROWER C T, HAAGSMA J, et al.Hydrogen storage in binary and ternary Mg based alloys: a comprehensive experimental study[J]. International journal of hydrogen energy, 2010, 35(5): 2091-2103. [39] LI B, LI J D, ZHAO H J, et al.Mg-based metastable nano alloys for hydrogen storage[J]. International journal of hydrogen energy, 2019, 44(12): 6007-6018. [40] 罗龙, 吴文远, 边雪, 等. 钒基固溶体贮氢合金的研究进展[J]. 稀有金属, 2017, 41(11): 1265-1272. LUO L, WU W Y, BIAN X, et al.Research progress of vanadium-based solid solution hydrogen storage alloys[J]. Chinese journal of rare metals, 2017, 41(11): 1265-1272. [41] TAMURA T, KAZUMI T, KAMEGAWA A, et al.Protium absorption properties and protide formations of Ti-Cr-V alloys[J]. Journal of alloys and compounds, 2003, 356: 505-509. [42] 梁浩. V-Ti-Cr-Fe合金吸/放氢性能的研究[D]. 成都: 四川大学, 2006. LIANG H.The hydrogen absorption and desorption properties of V-Ti-Cr-Fe alloys[D]. Chengdu: Sichuan University, 2006. [43] MOSHER D A, ARSENAULT S, TANG X, et al.Design, fabrication and testing of NaAlH4 based hydrogen storage systems[J]. Journal of alloys and compounds, 2007, 446: 707-712. [44] YU X B, WU Z, XIA B J, et al.Enhancement of hydrogen storage capacity of Ti-V-Cr-Mn BCC phase alloys[J]. Journal of alloys and compounds, 2004, 372(1-2): 272-277. [45] EBERLE U, ARNOLD G, HELMOLT V R.Hydrogen storage in metalehydrogen systems and their derivatives[J]. Journal of power sources, 2006, 154(2): 456-460. [46] WANG K, ZHANG J, HE P.Theoretical study on the structure and dehydrogenation mechanism of mixed metal amidoborane, Na[Li(NH2BH3)]2[J]. Journal of alloys and compounds, 2013, 581: 59-65. [47] WOLF G, BAUMANN J, BAITALOW F, et al.Calorimetric process monitoring of thermal decomposition of B-N-H compounds[J]. Thermochimica acta, 2000, 343(1): 19-25. [48] WANG K, ZHANG J G, MAN T T, et al.ChemInform abstract: recent process and development of metal aminoborane[J]. Cheminform, 2013, 44(38): 1076-1089. [49] KUMAR P, SINGH S, HASHMI S, et al.MXenes: emerging 2D materials for hydrogen storage[J]. Nano energy, 2021: 105989. [50] ALHABEB M, MALESKI K, ANASORI B, et al.Guidelines for synthesis and processing of two-dimensional titanium carbide(Ti3C2Tx MXene)[J]. Chemicals of materials, 2017, 29: 7633-7644. [51] 中国科学院大连化学物理研究所储氢材料研究取得新进展[J]. 科技促进发展, 2019, 15(3): 222-223. New progress has been made in the research of hydrogen storage materials in Dalian Institute of Chemical Physics, Chinese Academy of Sciences[J]. Science & technology for development, 2019, 15(3): 222-223. [52] INCROPERA F P, DEWITT D P, BERGMAN T L, 等著. 葛新石, 叶宏, 译. 传热和传质基本原理[M]. 北京: 化学工业出版社, 2007. [53] GOPAL M R, MURTHY S S.Prediction of heat and mass transfer in annular cylindrical metal hydride beds[J]. International journal of hydrogen energy, 1992, 17(10): 795-805. [54] NAKAGAWA T, INOMATA A, AOKI H.Numerical analysis of heat and mass transfer characteristics in the metal hydride bed[J]. International journal of hydrogen energy, 2000, 25(4): 339-350. [55] 叶建华, 蒋利军, 李志念, 等. 金属氢化物储氢器吸氢过程的数值分析[J]. 太阳能学报, 2011, 32(11): 1704-1709. YE J H, JIANG L J, LI Z N, et al.Numerical analysis for hydriding in metal hydride hydrogen storage tank[J]. Acta energiae solaris sinica, 2011, 32(11): 1704-1709. [56] WANG Y, ADROHER X C, CHEN J X, et al.Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds[J]. Journal of power sources, 2009, 194(2): 997-1006. [57] PHATE A K, MAIYA M P, MURTHY S S.Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds[J]. International journal of hydrogen energy, 2007, 32(12): 1969-1981. [58] KAPLAN Y.Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors[J]. International journal of hydrogen energy, 2009, 34(5): 2288-2294. [59] GKANAS E I, GRANT D M, KHZOUZ M, et al.Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces[J]. International journal of hydrogen energy, 2016: 10795-10810. [60] BAI X S, YANG W W, TANG X Y, et al.Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: a numerical study[J]. Energy, 2021, 220: 119738. [61] DEHOUCHE Z, GRIMARD N, LAURENCELLE F, et al.Hydride alloys properties investigations for hydrogen sorption compressor[J]. Journal of alloys and compounds, 2005, 399(1-2): 224-236. [62] YANG Y X, VOSKUILEN T G, POURPOINT T L, et al.Determination of the thermal transport properties of ammonia borane and its thermolysis product (polyiminoborane) using the transient plane source technique[J]. International journal of hydrogen energy, 2012, 37(6): 5128-5136. [63] KANG H, CHUNG D, OH Y, et al. Experimental comparison on heat transfer-enhancing component of metal hydride bed[J]. Fusion engineering and design, 2016, 109-111(Part A): 965-969. [64] KIM K J, MONTOYA B, RAZANI A.Metal hydride compacts of improved thermal conductivity[J]. International journal of hydrogen energy, 2001, 26(6): 609-613. [65] POHLMANN C, ROENTZSCH L, HEUBNER F, et al.Solid-state hydrogen storage in hydralloy-graphite composites[J]. Journal of power sources, 2013, 231: 97-105. [66] HEUBNER F, HILGER A, KARDJILOV N, et al.In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage[J]. Journal of power sources, 2018, 397: 262-270. [67] HERBRIG K, POHLMANN C, GONDEK Ł, et al.Investigations of the structural stability of metal hydride composites by in-situ neutron imaging[J]. Journal of power sources, 2015, 293: 109-118. [68] LIN C K, CHEN Y C.Effects of cyclic hydriding-dehydriding reactions of LaNi5 on the thin-wall deformation of metal hydride storage vessels with various configurations[J]. Renewable energy, 2012, 48(1): 404-410. [69] 蒋利军, 李志念, 王琦, 等. 一种固态储氢装置: CN114046444A[P].2022-02-15. [70] 蒋利军, 叶建华, 李志念, 等. 一种固态储氢罐: CN213177651U[P].2021-05-11. [71] KUBO K, KAWAHARAZAKI Y, ITOH H.Development of large MH tank system for renewable energy storage[J]. International journal of hydrogen energy, 2017, 42(35): 22475-22479. [72] TOSHIBA. Toshiba H2One power for JR station, Tohoku electric site in Japan[J]. Fuel cells bulletin, 2017(5): 5-6. [73] VALVERDE L, ROSA F, BORDONS C, et al.Energy management strategies in hydrogen Smart-Grids: a laboratory experience[J]. International journal of hydrogen energy, 2016, 41(31): 13715-13725. [74] GALLANDAT N, BERARD J, ABBET F, et al.Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons[J]. Sustainable energy & fuels, 2017, 1(8): 1748-1758. [75] YARTYS V A, LOTOTSKYY M, LINKOV V, et al.Metal hydride hydrogen compression: recent advances and future prospects[J]. Applied physics A, 2016, 122(4): 1-18. [76] DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles [77] 蒋利军, 屠海令, 黄倬, 等. 燃料电池用金属氢化物贮氢罐的研究[J]. 稀有金属, 2002(6): 517-520. JIANG L J, TU H L, HUANG Z, et al.Metal hydride hydrogen storage tanks for fuel cell[J]. Chinese journal of rare metals, 2002(6): 517-520. [78] 蒋利军. 加快固态储氢技术创新和应用[J]. Engineering, 2021, 7(6): 66-71. JIANG L J.Expediting the innovation and application of solid hydrogen storage technology[J]. Engineering, 2021, 7(6): 66-71. [79] ANGELA P, GUNTER S.Fuel cell systems for submarines: from the first idea to serial production[J]. Journal of power sources, 2002, 106(1): 381-383. [80] LOTOTSKYY M V, TOLJ I, PARSONS A, et al.Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank[J]. Journal of power sources, 2016, 316: 239-250.