建立风光互补优化配置从可实现性评价至优化配置决策全过程的优化配置模型。模型基于源-荷匹配思想,建立风光联合出力的负荷匹配度指标;考虑并网导致的新增调峰需求、新能源发电的降碳收益、弃电惩罚成本,构建风光联合出力的平均度电成本模型。以负荷匹配度最大和平均度电成本最小为优化目标,采用NSGA-Ⅱ算法对风光装机容量配置进行优化,引入COWA算子,采用博弈论方法确定指标权重对优化解集进行进一步优选以辅助决策。以某地区为算例,求解验证模型的有效性,所建模型适用于区域电网和微网的规划建设,通过优化的风光装机容量配置,能够提高新能源出力对负荷的匹配程度,降低平均度电成本。
Abstract
In this paper, the optimal allocation model of the whole process from the feasibility evaluation to the optimal allocation decision is established. Based on the source-load matching idea, the model establishes the load matching index of wind-solar combined output; considering the new peak shaving demand caused by grid connection, the carbon reduction benefit of renewable energy power generation, and the penalty cost of electricity abandonment, the average power cost model of wind-solar combined output is constructed. Taking the maximum load matching degree and the minimum average power cost as the optimization objectives, the NSGA-Ⅱ algorithm is used to optimize the capacity allocation of wind and solar installation. The COWA operator is introduced and the game theory method is used to determine the index weight to further optimize the optimization solution set to assist decision making. This paper takes a certain region as an example to verify the validity of the model. The model is suitable for the planning and construction of regional power grid and micro-grid. By optimizing the capacity configuration of wind and solar installation, the matching degree of renewable energy output to load can be improved, and the average power cost can be reduced.
关键词
太阳能 /
风能 /
多目标优化 /
风光互补 /
成本核算
Key words
solar energy /
wind power /
multi-objective optimization /
wind and solar complementarity /
cost accounting
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张旭, 张楠, 赵冬梅. 风光互补发电系统应用实例对比分析[J]. 电源技术, 2014, 38(7): 1399-1401.
ZHANG X, ZHANG N, ZHAO D M.Application cases comparison analysis of wind and PV hybrid power system[J]. Chinese journal of power sources, 2014, 38(7): 1399-1401.
[2] COUTO A, ESTANQUEIRO A.Exploring wind and solar PV generation complementarity to meet electricity demand[J]. Energies, 2020, 13(16): 4132.
[3] 段偲默, 苗世洪, 霍雪松, 等. 基于动态Copula的风光联合出力建模及动态相关性分析[J]. 电力系统保护与控制, 2019, 47(5): 35-42.
DUAN S M,MIAO S H,HUO X S, et al.Modeling and dynamic correlation analysis of wind/solar power joint output based on dynamic Copula[J]. Power system protection and control, 2019, 47(5): 35-42.
[4] 万家豪, 苏浩, 冯冬涵, 等. 计及源荷匹配的风光互补特性分析与评价[J]. 电网技术, 2020, 44(9): 3219-3226.
WAN J H,SU H,FENG D H,et al.Analysis and evaluation of the complementarity characteristics of wind and photovoltaic considering source-load matching[J]. Power system technology, 2020, 44(9): 3219-3226.
[5] ABDELKADER A, RABEH A, MOHAMED ALI D, et al.Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage[J]. Energy, 2018, 163: 351-363.
[6] 李湃, 方保民, 祁太元, 等. 基于源-荷匹配的区域电网风/光/储容量配比优化方法[J]. 中国电力, 2022, 55(1): 46-54.
LI P,FANG B M,QI T Y,et al.Capacity proportion optimization of wind, solar power and battery energy storage system for regional power grid based on source-load matching[J]. Electric power, 2022, 55(1): 46-54.
[7] 曾雪婷, 刘天琪, 李茜, 等. 基于虚拟电源配置策略的风光水火多源互补短期优化调度[J]. 电网技术, 2016, 40(5): 1379-1386.
ZENG X T, LIU T Q, LI Q, et al.Short-term complementary optimal dispatch model of multi-source hybrid power system based on virtual power configuration strategy[J]. Power system technology, 2016, 40(5): 1379-1386.
[8] 杨茂, 杨琼琼, 苏欣. 基于风电场等效平均风速的风电功率日前预测研究[J]. 太阳能学报, 2020, 41(2): 85-92.
YANG M, YANG Q Q, SU X.Research of day-ahead wind power forecast based on wind farm equivalent mean wind speed[J]. Acta energiae solaris sinica, 2020, 41(2): 85-92.
[9] 齐志远, 郭佳伟, 李晓炀. 基于联合概率分布的风光互补发电系统优化配置[J]. 太阳能学报, 2018, 39(1): 203-209.
QI Z Y,GUO J W,LI X Y.Optimal configuration for wind power and solar power hybrid systems based on joint probability distribution of wind speed with solar irradiance[J]. Acta energiae solaris sinica, 2018, 39(1): 203-209.
[10] 刘永前, 梁超, 阎洁, 等. 大型风电基地远距离消纳全系统成本计算方法(英文)[J]. 中国电机工程学报, 2020, 40(2): 500-510.
LIU Y Q,LIANG C,YAN J, et al.Overall levelized cost of energy for a large-scale wind farm base with long-distance transmission and accommodation[J]. Proceedings of the CSEE, 2020, 40(2): 500-510.
[11] 赵振宇, 李志伟, 姚雪. 基于碳减排收入的风电成本电价研究[J]. 可再生能源, 2014, 32(5): 662-667.
ZHAO Z Y, LI Z W, YAO X.Study on cost price of wind power electricity based on the certified emission reduction income[J]. Renewable energy resources, 2014, 32(5): 662-667.
[12] DEB K, AGRAWAL S, PRATAP A, et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[J]. IEEE transactions on evol utionary computation, 2000, 6(2): 182-197.
[13] 王茜, 张粒子. 采用NSGA-Ⅱ混合智能算法的风电场多目标电网规划[J]. 中国电机工程学报, 2011, 31(19): 17-24.
WANG Q, ZHANG L Z.Multi-objective transmission planning associated with wind farms applying NSGA-Ⅱhybrid intelligent algorithm[J]. Proceedings of the CSEE, 2011, 31(19): 17-24.
基金
国家电网有限公司科技项目《平价时代新能源经济开发规模评价关键技术及应用研究》(4000-202157059A-0-0-00)