复合运动下风力机翼型动态失速特性研究

冯俊鑫, 赵振宙, 陈明, 江瑞芳, 刘一格, 王丁丁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 430-436.

PDF(37797 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(37797 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 430-436. DOI: 10.19912/j.0254-0096.tynxb.2022-0551

复合运动下风力机翼型动态失速特性研究

  • 冯俊鑫, 赵振宙, 陈明, 江瑞芳, 刘一格, 王丁丁
作者信息 +

STUDY ON DYNAMIC STALL CHARACRERISTICS OF WIND TURBINE AIRFOIL UNDER COMPOUND MOTION

  • Feng Junxin, Zhao Zhenzhou, Chen Ming, Jiang Ruifang, Liu Yige, Wang Dingding
Author information +
文章历史 +

摘要

采用带γ-Reθ转捩修正的SST k-ω湍流模型和动网格技术,以S809翼型为研究对象,探讨复合(俯仰+前后横荡)运动下的动态失速特性。结果表明:横荡运动扩大了翼型升阻力系数迟滞环状;上仰阶段升力系数增加,阻力系数减小,增减幅度与横荡幅度成正比;降低了下俯阶段的升力系数。横荡运动通过改变翼型边界层流体动能,有效缩小翼型尾缘涡的拓扑结构,增强前缘涡的诱导效应,使得翼型上仰阶段失速程度减弱。

Abstract

Wind turbine normally occurs dynamic stall due to wind shear, yaw, pitch and other factors. In the six-dimensional motions, surge motion has a significant impact on the aerodynamic characteristics of floating wind turbine, and the influence law of its dynamic stall characteristics are worth discussing. The SST k-ω turbulence model with the γ-Reθ transition model and dynamic grid technique are used to study dynamic stall characteristics of S809 airfoil under the influence of compound motion (surge+pitch). The results show that, surge motion enlarges the hysteresis loop of the lift and drag coefficient. The lift coefficient increases and drag coefficient decreases in the pitching up stage, and the fluctuating amplitude is proportional to the amplitude of surge. The lift coefficients decrease in the pitching down stage. By changing energy of the airfoil boundary layer, surge effectively reduces the topology of the trailing edge vortex, enhances the induction effect of the leading-edge vortex, and weakens the dynamic stall degree of the airfoil in the pitching up stage. This study reveals the dynamic stall characteristics of airfoil under surge motion, which is important to accurately understand and evaluate the aerodynamic performance of floating wind turbine.

关键词

海上风电 / 风力机 / 空气动力学 / 横荡运动 / 俯仰运动 / 动态失速 / S809翼型

Key words

offshore wind power / wind turbines / aerodynamics / swaying motion / pitching motion / dynamic stall / S809 airfoil

引用本文

导出引用
冯俊鑫, 赵振宙, 陈明, 江瑞芳, 刘一格, 王丁丁. 复合运动下风力机翼型动态失速特性研究[J]. 太阳能学报. 2023, 44(8): 430-436 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0551
Feng Junxin, Zhao Zhenzhou, Chen Ming, Jiang Ruifang, Liu Yige, Wang Dingding. STUDY ON DYNAMIC STALL CHARACRERISTICS OF WIND TURBINE AIRFOIL UNDER COMPOUND MOTION[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 430-436 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0551
中图分类号: TK83   

参考文献

[1] SEBASTIAN T, LACKNER M A.A comparison of first-order aerodynamic analysis methods for floating wind turbines[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2010.
[2] SEBASTIAN T, LACKNER M A.Development of a free vortex wake method code for offshore floating wind turbines[J]. Renewable energy, 2012, 46: 269-275.
[3] SEBASTIAN T, LACKNER M A.Analysis of the induction and wake evolution of an offshore floating wind turbine[J]. Energies, 2012, 5(4): 968-1000.
[4] 林易, 李晔, 段磊. 漂浮式风力机非定常气动特性分析[J]. 船舶与海洋工程, 2019, 35(6): 8-14.
LIN Y, LI Y, DUAN L.Analysis on the unsteady aerodynamic of floating wind turbines[J]. Naval architecture and ocean engineering, 2019, 35(6): 8-14.
[5] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(1): 294-301.
LIU L Q, XIAO C S, GUO Y.Study on aerodynamic characteristics of floating horizontal wind turbine[J]. Acta energiae solaris sincia, 2021, 42(1): 294-301.
[6] TRAN T T, KIM D H.The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis[J]. Journal of wind engineering & industrial aerodynamics, 2015, 142: 65-81.
[7] 方圆, 段磊. 漂浮式风力机在纵摇运动下的气动性能数值研究[J]. 舰船科学技术, 2020, 42(13): 103-108.
FANG Y, DUAN L.Numerical study of aerodynamic performance of a floating offshore wind turbine under pitch motion[J]. Ship science and technology, 2020, 42(13): 103-108.
[8] 刘强, 杨科, 黄宸武, 等. 漂浮式风力机动态响应特性研究[J]. 工程热物理学报, 2013, 34(7): 1256-1261.
LIU Q, YANG K, HUANG C L, et al.Study on the dynamic response of floating wind turbines[J]. Journal of engineering thermophysics, 2013, 34(7): 1256-1261.
[9] 吴俊, 丁金鸿, 何炎平, 等. 海上浮式风机气动性能数值模拟[J]. 海洋工程, 2016, 34(3): 38-46.
WU J, DING J H, HE Y P, et al.Numerical analysis of aerodynamic performance of floating offshore wind turbine[J]. The ocean engineering, 2016, 34(3): 38-46.
[10] SHEN X, CHEN J G, HU P, et al.Study of the unsteady aerodynamics of floating wind turbines[J]. Energy, 2018, 145: 793-809.
[11] 任年鑫, 李玉刚, 欧进萍. 浮式海上风力机叶片气动性能的流固耦合分析[J]. 计算力学学报, 2014, 31(1): 91-95.
REN N X, LI Y G, OU J P.The fluid-structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade[J]. Chinese journal of computational mechanics, 2014, 31(1): 91-95.
[12] 黄亚振, 陈嘉佳, 沈昕, 等. 浮式风力机横荡运动下气动特性分析[J]. 太阳能学报, 2021, 42(9): 279-285.
HUANG Y Z, CHEN J J, SHEN X, et al.Aerodynamic performance of floating offshore wind turbine under plantform sway motion[J]. Acta energiae solaris sinica, 2021, 42(9): 279-285.
[13] 丁勤卫, 李春, 杨阳, 等. 极限海况下三种漂浮式风力机平台的动态响应对比[J]. 水资源与水工程学报, 2015, 26(1): 159-165.
DING Q W, LI C, YANG Y, et al.Comparison of dynamic response for three floating wind turbine platforms under extreme sea situation[J]. Journal of water resources and water engineering, 2015, 26(1): 159-165.
[14] RHO J B, CHOI H S, LEE W C, et al.Heave and pitch motions of a spar platform with damping plate[C]//The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002.
[15] 张立, 丁勤卫, 李春, 等. 风波耦合作用下风载荷对两种漂浮式风力机平台动态响应影响[J]. 热能动力工程, 2020, 35(6): 205-215.
ZHANG L, DING Q W, LI C, et al.Effects of wind load on dynamic response of two floating wind turbine platform under wind wave coupling[J]. Journal of engineering for thermal energy and power, 2020, 35(6): 205-215.
[16] 张立, 丁勤卫, 李春, 等. 风载荷对不同海上浮式风力机平台运动特性影响对比研究[J].太阳能学报, 2021, 42(9): 302-311.
ZHANG L, DING Q W, LI C, et al.Comparative study on effects of wind load on motion characteristics of different offshore floating wind turbine platforms[J]. Acta energiae solaris sinica, 2021, 42(9): 302-311.
[17] 乐丛欢, 李彦娥, 丁红岩, 等. 波浪荷载作用下海上新型潜式浮式风力机运动特性研究[J]. 太阳能学报, 2020, 41(2): 78-84.
LE C H, LI Y E, DING H Y, et al.Study on motion characteristics of a new type submerged floating wind turbine under wave load[J]. Acta energiae solaris sinica, 2020, 41(2): 78-84.
[18] 李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44(4): 85-91.
LI C, WANG Y B, JIANG M Z, et al.Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta energiae solaris sinica, 2023, 44(4): 85-91.
[19] 汤金桦, 李春, 丁勤卫, 等. 不同工况下漂浮式风力机整机动态特性对比分析[J]. 热能动力工程, 2016, 31(11): 92-99.
TANG J H, LI C, DING Q W, et al.Comparative analysis of dynamic characteristics of afloating typewind turbine under varions operating conditions[J]. Journal of engineering for thermal energy and power, 2016, 31(11): 92-99.
[20] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables: part I: model formulation[J]. Journal of turbomachinery, 2006, 128(3): 413-422.
[21] GLAUERT H.Aerodynamic theory[M]. Berlin: Springer Berlin Heidelberg, 1935.
[22] RAMSAY R F, HOFFMAN M J, GREOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. 1995.
[23] JONKMAN J M.Dynamics of offshore floating wind turbines: model development and verification[J]. Wind energy, 2010, 12(5): 459-492.
[24] WAYMAN E N.Coupled dynamics and economic analysis of floating wind turbine systems[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[25] SCHLIPF D, SANDNER F, RAACH S, et al.Nonlinear model predictive control of floating wind turbines[C]//23rd International Offshore and Polar Engineering, Anchorage, Alaska, USA, 2013.
[26] FORRISTALL G Z.Measurements of a saturated range in ocean wave spectra[J]. Journal of geophysical research: oceans, 1981, 86(C9): 8075-8084.

基金

国家自然科学基金(51876054)

PDF(37797 KB)

Accesses

Citation

Detail

段落导航
相关文章

/