低成本无氟水系混合溶剂醋酸锂电解液研究

吴凡, 蒋文全, 罗熳, 武媛方, 张永强, 赫文秀

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 17-22.

PDF(1834 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1834 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 17-22. DOI: 10.19912/j.0254-0096.tynxb.2022-0560

低成本无氟水系混合溶剂醋酸锂电解液研究

  • 吴凡1~3, 蒋文全1~4, 罗熳1,3,4, 武媛方1~4, 张永强5, 赫文秀5
作者信息 +

RESEARCH ON LOW-COST FLUORINE-FREE AQUEOUS MIXED SOLVENT LITHIUM ACETATE ELECTROLYTES

  • Wu Fan1~3, Jiang Wenquan1~4, Luo Man1,3,4, Wu Yuanfang1~4, Zhang Yongqiang5, He Wenxiu5
Author information +
文章历史 +

摘要

利用共溶剂1,5-戊二醇(PD)和聚乙二醇(PEG)改进13 m(m=[mol盐]/[kg溶剂]质量摩尔浓度)LiOAc作为水系锂离子电池电解液的电化学稳定窗口,研制低成本无氟水系混合溶剂醋酸锂电解液。通过红外吸收和拉曼散射光谱对电解液中水分子的活性进行表征,结果表明,在混合溶剂电解液中水分子的活性受到抑制。电化学测试表明电解液成分为2 m LiOAc-PD0.5PEG0.5时,具有最宽的电化学稳定窗口3.10 V,使Li4Ti5O12负极可进行可逆充放电,最后Li4Ti5O12//LiMn2O4全电池测试得到初始平台电压为2.3 V,能量密度为0.0616 kWh/kg,相较于13 m LiOAc电解液具有更高的比容量和循环稳定性。

Abstract

Using 1,5-pentanediol (PD) and polyethylene glycol (PEG) as co-solvent to improve the electrochemical performance of 13 m (m=[mol salt]/[kg solvent]) LiOAc as aqueous lithium-ion batteries electrolytes obtains low-cost fluorine-free aqueous mixed solvent lithium acetate electrolytes. The activity of water molecules in the electrolyte was characterized by infrared absorption and Roman scattering spectroscopy. The results show that in the mixed solvent electrolytes the activity of water molecules is inhibited. Electrochemical tests show that the electrolytes have the widest electrochemical stability window of 3.10 V when the electrolyte composition is 2 m LiOAc-PD0.5PEG0.5, which makes the negative electrode Li4Ti5O12 reversibly charge and discharge. Li4Ti5O12//LiMn2O4 full cell with 2 m LiOAc-PD0.5PEG0.5 tests show an initial platform voltage of 2.3 V and specific energy of 0.0616 kWh/kg, which obtains higher capacity and cycle stability than 13 m LiOAc electrolytes.

关键词

锂离子电池 / 电解液 / 储能 / 溶剂化作用

Key words

lithium-ion batteries / electrolyte / energy storage / solvation

引用本文

导出引用
吴凡, 蒋文全, 罗熳, 武媛方, 张永强, 赫文秀. 低成本无氟水系混合溶剂醋酸锂电解液研究[J]. 太阳能学报. 2023, 44(8): 17-22 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0560
Wu Fan, Jiang Wenquan, Luo Man, Wu Yuanfang, Zhang Yongqiang, He Wenxiu. RESEARCH ON LOW-COST FLUORINE-FREE AQUEOUS MIXED SOLVENT LITHIUM ACETATE ELECTROLYTES[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 17-22 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0560
中图分类号: TM911   

参考文献

[1] HUANG J H, GUO Z W, MA Y Y, et al.Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small methods, 2019, 3(1): 1800272.
[2] LI W, DAHN J R, WAINWRIGHT D S.Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118.
[3] YANG D, ZHOU Y P, GENG H B, et al.Pathways towards high energy aqueous rechargeable batteries[J]. Coordination chemistry reviews, 2020, 424: 213521.
[4] SUO L M, BORODIN O, GAO T, et al.“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
[5] YAMADA Y, USUI K, SODEYAMA K, et al.Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature energy, 2016, 1(10): 1-9.
[6] SUO L M, BORODIN O, SUN W, et al.Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte[J]. Angewandte chemie, 2016, 128(25): 7252-7257.
[7] CHEN L, ZHANG J X, LI Q, et al.A 63 m superconcentrated aqueous electrolyte for high-energy li-ion batteries[J]. ACS energy letters, 2020, 5(3): 968-974.
[8] WANG F, BORODIN O, DING M S, et al.Hybrid aqueous/non-aqueous electrolyte for safe and high-energy li-ion batteries[J]. Joule, 2018, 2(5): 927-937.
[9] SHANG Y X, CHEN N, LI Y J, et al.An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries[J]. Advanced materials, 2020, 32(40): 2004017.
[10] MA Z K, CHEN J W, VATAMANU J, et al.Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery[J]. Energy storage materials, 2022, 45: 903-910.
[11] LUKATSKAYA M R, FELDBLYUM J I, MACKANIC D G, et al.Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy & environmental science, 2018, 11(10): 2876-2883.
[12] DONG S Y, WANG Y, CHEN C L, et al.Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors[J]. Nano-micro letters, 2020, 12(1): 168.
[13] JAUMAUX P, YANG X, ZHANG B, et al.“Localized water-in-salt” electrolyte for aqueous lithium-ion batteries[J]. Angewandte chemie international edition, 2021, 60(36): 19965-19973.
[14] HE X, YAN B, ZHANG X, et al.Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries[J]. Nature communications, 2018, 9(1): 5320.
[15] XIE J, LIANG Z J, LU Y C.Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nature materials, 2020, 19(9): 1006-1011.

基金

内蒙古自治区科技计划项目(2020GG0151); 广东省高水平创新研究院项目(2021B0909050001)

PDF(1834 KB)

Accesses

Citation

Detail

段落导航
相关文章

/