将太阳能光伏光热综合利用技术(PV/T)与质子交换膜电解水制氢技术(PEMWE)结合,提出基于PV/T的质子交换膜电解制氢系统(PV/T-PEMWE)。系统由PV/T模块与PEM电解槽通过耦合而集成,建立数学模型分析其在白天的动态光电光热性能及制氢性能,并在相同条件下将其性能与光伏电解制氢系统(PV-PEMWE)进行对比。结果表明:PV/T系统全天总发电量为0.5 kWh,电效率维持在13%~15%之间,总发热量为9.4 MJ,热效率维持在30%~40%之间;PV/T-PEMWE系统制氢效率高于PV-PEMWE系统,PV/T-PEMWE系统全天的制氢量为153 L,平均制氢速率约为19 L/h。
Abstract
Combining solar photovoltaic photothermal comprehensive utilization technology (PV/T) with proton exchange membrane electrolysis water electrolysis technology (PEMWE), a PV/T-based on PEMWE system (PV/T-PEMWE) is proposed. PV/T module and PEM electrolyzer are integrated through coupling, a mathematical model is established to analyze the dynamic photoelectric photothermal performance and hydrogen production performance of the system during the day, and its performance is compared with photovoltaic electrolytic hydrogen production system (PV-PEMWE) under the same conditions. The results show that the total power generation of the PV/T system is 0.5 kWh throughout the day, the electrical efficiency is maintained at 13%-15%, the total calorific value is 9.4 MJ, the thermal efficiency is maintained at 30%-40%. The hydrogen production efficiency of PV/T-PEMWE system is higher than that of PV-PEMWE system. The PV/T-PEMWE system can produce 153 L of hydrogen throughout the day, and the average hydrogen production rate is about 19 L/h.
关键词
太阳能 /
电解槽 /
制氢 /
模拟平台 /
光伏光热
Key words
solar energy /
electrolytic cell /
hydrogen production /
simulation platform /
photovoltaic/thermal
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 李光辉, 梁丹曦, 等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
LI J L, LI G H, LIANG D X, et al.Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(5): 1-9.
[2] 贺云龙, 代彦军. 基于PV/T的太阳能热泵热水系统实验研究[J]. 太阳能学报, 2020, 41(12): 83-89.
HE Y L, DAI Y J.Experimental study of solar heat pump hot water system based on PV/T module[J]. Acta energiae solaris sinica, 2020, 41(12): 83-89.
[3] GAO Y H, JI J, HAN K D, et al.Experimental and numerical study of a PV/T direct-driven refrigeration/heating system[J]. Energy, 2021, 230: 120793.
[4] 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604.
HU B, XU L J, HE S, et al.Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical industry and engineering progress, 2022, 41(9): 4595-4604.
[5] KHELFAOUI N, DJAFOUR A, GHENAI C, et al.Experimental investigation of solar hydrogen production PV/PEM electrolyser performance in the Algerian Sahara regions[J]. International journal of hydrogen energy, 2021, 46(59): 30524-30538.
[6] SENTHILRAJA S, GANGADEVI R, MARIMUTHU R, et al.Performance evaluation of water and air based PV/T solar collector for hydrogen production application[J]. International journal of hydrogen energy, 2020, 45(13): 7498-7507.
[7] SANGEETHA M, MANIGANDAN S, ASHOK B, et al.Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production[J]. Fuel, 2021, 286: 119422.
[8] TABANJAT A, BECHERIF M, EMZIANE M, et al.Fuzzy logic-based water heating control methodology for the efficiency enhancement of hybrid PV-PEM electrolyser systems[J]. International journal of hydrogen energy, 2015, 40(5): 2149-2161.
[9] 戴凡博. PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究[D]. 杭州: 浙江大学, 2020.
DAI F B.Study of catalvstin PEM water electrolysis and directly coupling photovoltaic system simulation[D]. Hangzhou: Zhejiang University, 2020.
[10] 张磊. 热管式太阳能PV/T热泵系统的性能研究[D]. 北京: 北京建筑大学, 2017.
ZHANG L.Performance study of heat pipe solar PV/T heat pump system[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017.
[11] 符慧德. 热管式光伏光热综合利用系统的理论和实验研究[D]. 合肥: 中国科学技术大学, 2012.
FU H D.Numerical and experimental study on a heat pipe photovoltaic/thermal system[D]. Hefei: University of Science and Technology of China, 2012.
[12] BERGMAN T L, INCROPERA F P, et al.Fundamentals of heat and mass transfer[M]. State of New York John: Wiley & Sons, 2011.
[13] CHOW T T.Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J]. Solar energy, 2003, 75(2): 143-152.
[14] FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of cleaner production, 2020, 261: 121184.
[15] LEBBAL M E, LECŒUCHE S. Identification and monitoring of a PEM electrolyser based on dynamical modelling[J]. International journal of hydrogen energy, 2009, 34(14): 5992-5999.
[16] ESPINOSA-LÓPEZ M, DARRAS C, POGGI P, et al. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer[J]. Renewable energy, 2018, 119: 160-173.
[17] 朱绘娟, 裴刚, 符慧德, 等. 不同管间距热管PV/T系统中光电/光热性能的对比研究[J]. 太阳能学报, 2013, 34(7): 1172-1176.
ZHU H J, PEI G, FU H D, et al.Comparative research between two different heat pipe spaces PV/T systems[J]. Acta energiae solaris sinica, 2013, 34(7): 1172-1176.
[18] 郑庆琳, 白路, 梁宗存. 不同结构PV/T系统的热电性能研究[J]. 可再生能源, 2015, 33(11): 1603-1607.
ZHENG Q L, BAI L, LIANG Z C.Experimental study on electric and thermal performance of different PV/T systems[J]. Renewable energy resources, 2015, 33(11): 1603-1607.
[19] 马晓丰. 太阳能光伏光热-热泵系统动态模拟及优化研究[D]. 青岛: 青岛理工大学, 2018.
MA X F.Study on dynamic simulation and optimization of PV/T-heat pump system[D]. Qingdao: Qingdao University of Technological, 2018.
[20] ATLAM O, KOLHE M.Equivalent electrical model for a proton exchange membrane (PEM) electrolyser[J]. Energy conversion and management, 2011, 52(8-9): 2952-2957.