为探究风电机组齿轮箱高速轴圆柱滚子轴承在服役过程中的疲劳寿命和可靠度变化规律,以新疆达坂城风场年度风载荷为外部激励,建立基于威布尔分布的随机风速模型及考虑内部齿轮时变啮合刚度、轴承时变刚度等激励因素的风电齿轮传动系统齿轮-轴承耦合动力学模型,通过Newmark积分法求解高速轴轴承动载荷。运用雨流计数法及Goodman平均应力修正法得到对称循环应力,结合线性损伤理论和非线性损伤理论的对比,获得轴承的接触疲劳寿命和动态可靠度。结果表明:额定功率下,在外部随机风载激励和内部齿轮-轴承耦合共同作用下,内激励仍然对系统高速轴轴承动载荷起主要作用。与线性损伤累计理论相比,非线性损伤累计理论考虑载荷加载的顺序效应,能更好地描述轴承在整个疲劳寿命过程中各阶段的疲劳损伤情况。轴承在服役过程中,前15年的损伤较小,可靠度衰减缓慢,而在后期可靠度呈现出非线性迅速下降趋势,应及时调整维护策略。
Abstract
In order to explore the fatigue life and reliability of the high-speed shaft cylindrical roller bearing of the wind turbine gearbox during service, with the annual wind load of the Dabancheng wind farm in Xinjiang as the external excitation, a stochastic wind speed model based on Weibull distribution, and a gear-bearing coupling dynamics model of the wind power gear transmission system considering incentive factors such as the time-varying mesh stiffness of the internal gear and the time-varying stiffness of the bearing, were established. And dynamic load of the high-speed shaft bearings was solving by Newmark integral method. The symmetrical cyclic stress was obtained by using the rain-flow counting method and the Goodman mean stress correction method. The contact fatigue life and dynamic reliability of the bearing were obtained by comparing the linear damage theory and the nonlinear damage theory. The results show that at a rated power, under the combined action of external random wind load excitation and internal gear-bearing coupling, the internal excitation still plays a major role in the dynamic load of the high-speed shaft bearing system. Compared with the linear damage accumulation theory, the nonlinear theory considers the sequential effect of load loading, thus could be better to describe the fatigue damage of the bearing at each stage throughout the fatigue life. During the service process of the bearing, the damage in the first 15 years is relatively small, and the reliability decays slowly, but the reliability shows a nonlinear rapid decline trend in the later period, thus the maintenance strategy should be adjusted in time.
关键词
风电机组 /
疲劳损伤 /
齿轮箱 /
可靠度 /
疲劳寿命 /
随机载荷
Key words
wind turbines /
fatigue damage /
gearbox /
reliability /
fatigue life /
random load
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙秋云, 朱才朝, 樊志鑫, 等. 误差对风电齿轮箱轴承疲劳寿命影响[J]. 太阳能学报, 2021, 42(7): 308-315.
SUN Q Y, ZHU C C, FAN Z X, et al.Effects of error on fatigue life of bearing for wind power gearbox[J]. Acta energiae solaris sinica, 2021, 42(7): 308-315.
[2] 胡姚刚, 李辉, 廖兴林, 等. 风电轴承性能退化建模及其实时剩余寿命预测[J]. 中国电机工程学报, 2016, 36(6): 1643-1649.
HU Y G, LI H, LIAO X L, et al.Performance degradation modele and prediction real-time remaining life for wind power bearings[J]. Proceedings of the CSEE, 2016, 36(6): 1643-1649.
[3] LIU H H, QIANG D, WEI J.A dynamic reliability assessment methodology of gear transmission system of wind turbine[J]. Engineering computations, 2020, 37(8): 2685-2710.
[4] XIONG Z J, QIU Y, FENG Y, et al.Fatigue damage of wind turbine gearbox under extreme wind conditions[C]//2018 Prognostics and System Health Management Conference(PHM-Chongqing), IEEE, Chongqing, China, 2018: 1208-1214.
[5] 代东昌, 周建星, 孙文磊, 等. 极端运行条件下风电行星齿轮传动系统动态特性研究[J]. 机械设计与制造, 2020(2): 91-95.
DAI D C, ZHOU J X, SUN W L, et al.Study on dynamic characteristics of planetary gear transmission system under extreme operating conditions[J]. Machinery design & manufacture, 2020(2): 91-95.
[6] 乔自珍, 周建星, 章翔峰. 多源时变激励下两级直齿轮传动系统有限元建模方法研究[J]. 振动与冲击, 2019, 38(15): 182-189.
QIAO Z Z, ZHOU J X, ZHANG X F.Finite element modeling method of two-stage spur gear transmission system under multi-source time-varying excitations[J]. Journal of vibration and shock, 2019, 38(15): 182-189.
[7] 安宗文, 胡敏, 刘波. 随机载荷作用下风电齿轮箱轴承疲劳寿命预测方法[J]. 兰州理工大学学报, 2016, 42(1): 35-39.
AN Z W, HU M, LIU B.Fatigue life prediction method of bearing in wind turbine gearbox under random load[J]. Journal of Lanzhou University of Technology, 2016, 42(1): 35-39.
[8] LIU D K, LI Q, HU W, et al.Fatigue life prediction of the axle box bearings for high-speed trains[J]. DYNA-ingeniería e industria, 2017, 92(5): 538-544.
[9] PENG Z C, HUANG H Z, WANG H K, et al.A new cumulative fatigue damage rule based on dynamic residual SN curve and material memory concept[J]. Metals, 2018, 8(6): 456.
[10] 方永锋, 陈建军, 曹鸿钧. 多次模糊载荷下结构动态模糊可靠性分析[J]. 机械工程学报, 2014, 50(6): 192-196.
FANG Y F, CHEN J J, CAO H J.Structural dynamic reliability fuzzy loads with some times and fuzzy strength[J]. Journal of mechanical engineering, 2014, 50(6): 192-196.
[11] 秦大同, 周志刚, 杨军, 等. 随机风载作用下风力发电机齿轮传动系统动态可靠性分析[J]. 机械工程学报, 2012, 48(3): 1-8.
QIN D T, ZHOU Z G, YANG J, et al.Tine-dependent reliability analysis gear transmission system of wind turbine under stochastio wind load[J]. Journal of mechanical engineering, 2012, 48(3): 1-8.
[12] 谢里阳, 刘建中, 吴宁祥, 等. 风电装备传动系统及零部件疲劳可靠性评估方法[J]. 机械工程学报, 2014, 50(11): 1-8.
XIE L Y, LIU J Z, WU N X, et al.Fatigue reliability evaluation method for gearbox component and system of wind turbine[J]. Journal of mechanical engineering, 2014, 50(11): 1-8.
[13] 李正文. 基于Copula函数失效相关系统的动态可靠性分析[D]. 西安: 西安电子科技大学, 2019.
LI Z W.Dynamic reliability analysis of failure-related systems based on Copula function[D]. Xi’an: Xidian University, 2019.
[14] 周志刚, 秦大同, 杨军, 等. 考虑失效相关性的风力发电机齿轮传动系统动态可靠性分析[J]. 太阳能学报, 2013, 34(7): 1212-1219.
ZHOU Z G, QIN D T, YANG J, et al.Time-dependent reliability analysis of wind turbine gear transmission system of wind turbine considering dependent failure[J]. Acta energiae solaris sinica, 2013, 34(7): 1212-1219.
[15] LI Y, ZHU C C, CHEN X, et al.Fatigue reliability analysis of wind turbine drivetrain considering strength degradation and load sharing using survival signature and FTA[J]. Energies, 2020, 13(8): 8-29.
[16] CHEN R B, ZHOU J X, SUN W L.Dynamic characteristics of the planetary gear system based on contact status of the tooth surface[J]. Journal of mechanical science and technology, 2018, 32(1): 69-80.
[17] 曹宏瑞, 李亚敏, 何正嘉, 等. 高速滚动轴承-转子系统时变轴承刚度及振动响应分析[J]. 机械工程学报, 2014, 50(15): 73-81.
CAO H R, LI Y M, HE Z J, et al.Time varying bearing stiffness and vibration response analysis of high speed rolling bearing-rotor systems[J]. Journal of mechanical engineering, 2014, 50(15): 73-81.
[18] 薛齐文, 杜秀云. 基于非线性损伤理论的焊接疲劳设计[J]. 机械工程学报, 2019, 55(6): 32-38.
XUE Q W, DU X Y.Fatigue design of welded structure based on the non-linear cumulative damage theory[J]. Journal of mechanical engineering, 2019, 55(6): 32-38.
[19] 张碌, 纪威, 周炜, 等. 基于强度退化的被劳累积损伤模型[J]. 农业工程学报, 2015, 31(增刊1): 47-52.
ZHANG L, JI W, ZHOU W, et al.Fatigue cumulative damage models based on strength degradation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(sup1): 47-52.
[20] 毛天雨, 余泳, 刘怀举, 等. 飞行汽车齿轮传动系统动态可靠性分析[J]. 机械传动, 2021, 45(6): 96-103, 176.
MAO T Y, YU Y, LIU H J, et al.Dynamic reliability analysis of flying car gear transmission system[J]. Journal of mechanical transmission, 2021, 45(6): 96-103, 176.
[21] 李威. 基于强度退化累积损伤模型的承载结构疲劳寿命预测研究[D]. 北京: 北京交通大学, 2019.
LI W.Fatigue life prediction research of load bearing structure based on cumulative damage model considering strength dagradation[D]. Beijing: Beijing Jiaotong University, 2019.
[22] 孙钰. 机械滚动轴承可靠运行剩余寿命预测及维修决策研究[D]. 舟山: 浙江海洋大学, 2020.
SUN Y.Research on remaining life prediction and maintenance decision-making of mechanical rolling bearings in reliable operation[D]. Zhoushan: Zhejiang Ocean University, 2020.
基金
新疆维吾尔自治区自然科学基金(2021D01C050); 新疆维吾尔自治区重点研发计划(2021B01003-1)