针对临近空间太阳能无人机太阳电池发电高效利用问题,建立翼型曲面上太阳电池发电模型,并进行数值分析。结果表明:日期、航向、翼面位置影响电池的电流、电压、功率、效率和日发电量。受太阳方位和直射情况变化影响,同一时刻不同位置电池最大电流差异达0.068 A,最大电压差异达2.28 V。除夏至外靠近前、后缘的电池日发电量受航向影响明显。由于单体电池的弦长与弧长之比接近于1,曲面使电池总辐照度减少引起的电流和功率损失可忽略。电池划分模型对日发电量的影响可忽略,因而可将单体电池作为整体进行分析。结果可为无人机太阳电池布局和连接设计提供参考。
Abstract
To solve the efficient power utilization problem of solar cells on near space unmanned aerial vehicles, a power generation model of solar cell on an airfoil surface of unmanned aerial vehicle is proposed and the numerical analysis is performed. The results show that the date, flight direction, and position on the airfoil surface affect the cell's current, voltage, power, efficiency, and daily power generation. The maximum current difference is 0.068 A and the maximum voltage difference is 2.28 V for solar cells at different positions at the same time, affected by the solar position and the variation of direct incidence conditions. Flight direction remarkably influences the daily power generation of solar cells near leading and trailing edges except for Summer Solstice. Reduction of total irradiance on cells induced by curved surface causes negligible losses of current and power because the ratios of chord length to arc length of single solar cells are close to unity. Cell partition models have a negligible effect on daily power generation; thus, a single solar cell can be analyzed as a whole. The results can be used as a reference for solar cell layout and interconnection design of unmanned aerial vehicles.
关键词
太阳能 /
无人机 /
太阳电池 /
数值分析 /
翼型
Key words
solar energy /
unmanned aerial vehicles /
solar cells /
numerical analysis /
airfoils
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 石文, 贾永清, 李广佳, 等. 高空超长航时太阳能无人机主要技术问题分析[J]. 飞航导弹, 2021(6): 63-66, 104.
SHI W, JIA Y Q, LI G J, et al.Analysis of key technical issues of high altitude long endurance solar UAV[J]. Aerodynamic missile journal, 2021(6): 63-66, 104.
[2] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018, 20(2): 22-31.
LI C F,JIANG L H.Research status and key technology of near space long endurance high altitude solar-powered unmanned air vehicle[J]. China basic science, 2018, 20(2): 22-31.
[3] ZHANG L, MA D L, YANG M Q, et al.Optimization and analysis of winglet configuration for solar aircraft[J]. Chinese journal of aeronautics, 2020, 33(12): 3238-3252.
[4] LI J, LYU M Y, TAN D J, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied thermal engineering, 2016, 104: 743-750.
[5] ZHANG Y, WANG Z P, GUO C W. The calculation and analysis of UAV solar array power generation[J]. Advanced materials research, 2014, 1008-1009: 22-30.
[6] 程雪涛, 徐向华, 梁新刚. 太阳电池在平流层中的工作性能分析[J]. 宇航学报, 2010, 31(3): 925-930.
CHENG X T, XU X H, LIANG X G.Analysis of the performance for the solar cells in near space[J]. Journal of astronautics, 2010, 31(3): 925-930.
[7] TAYAGAKI T, SHIMURA H, SASAKI A, et al.Comparative study of power generation in curved photovoltaic modules of series-and parallel-connected solar cells[J]. IEEE journal of photovoltaics, 2021, 11(3): 708-714.
[8] REDA I, ANDREAS A.Solar position algorithm for solar radiation applications[J]. Solar energy, 2004, 76(5): 577-589.
[9] STEIN J S, HOLMGREN W F, FORBESS J, et al.PVLIB:open source photovoltaic performance modeling functions for Matlab and Python[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016.
[10] COLOZZA A.Initial feasibility assessment of a high altitude long endurance airship[R]. NASA/CR-2003-212724, 2003.
[11] KREITH F, KREIDER J F.Numerical prediction of the performance of high altitude balloons[R]. NCAR-IN/STR-65, 1974.
[12] WU J T, FANG X D, WANG Z G, et al.Thermal modeling of stratospheric airships[J]. Progress in aerospace sciences, 2015, 75: 26-37.
[13] 高明, 余伟臣, 王杉杉, 等. 太阳能无人机能源系统的多维耦合建模[J]. 航空学报, 2021, 42(7): 224461.
GAO M, YU W C, WANG S S, et al.Multidimensional coupled modeling for solar powered UAV energy system[J]. Acta aeronautica et astronautica sinica, 2021, 42(7): 224461.
[14] FAZELPOUR F, VAFAEIPOUR M, RAHBARI O, et al.Considerable parameters of using PV cells for solar-powered aircrafts[J]. Renewable and sustainable energy reviews, 2013, 22: 81-91.
[15] 尹成越, 高普云, 郭健, 等. “微风”(Zephyr7)无人机机翼力学性能分析[J]. 强度与环境, 2012, 39(3): 19-25.
YIN C Y, GAO P Y, GUO J, et al.Mechanical performance analysis on wing’s of Zephyr7 UAV[J]. Structure & environment engineering, 2012, 39(3): 19-25.