永磁同步风力发电机存在产能效率不高的问题,而诠释产能效率的两个分解因素是效率和输出功率,因此该研究借助一种响应面法(RSM)和存档微遗传算法(AMGA)相结合的优化方法,以改善内部结构参数开展提高发电机产能效率的双目标优化研究。首先建立发电机平衡模型,确立优化双目标;其次,采用敏感性分析法确定定子内径、气隙长度、永磁体厚度及铁芯长度组合为设计变量,通过Box-Behnken试验设计(BBD)试验设计获得29组样本数据,根据RSM获得输出功率和效率的回归方程,并经方差分析验证模型可靠性;最后以效率和输出功率极大为优化双目标,借助RSM和AMGA相结合法进行寻优,得出最佳结构参数,从而提高发电机产能效率,并降低了功率脉动,提升电能品质。
Abstract
There is a problem of low productivity efficiency of permanent magnet synchronous wind turbines. Exergy efficiency and output power are two decomposition factors explaining exergy efficiency. Therefore, an optimization method combining response surface methodology(RSM) and archived micro genetic algorithm(AMGA) is proposed in this paper. By improving internal structural parameters and carrying out dual-objective optimization research to improve ameliorate generator productivity and efficiency. Firstly, the equilibrium model of dynamo exergy is established to determine the optimization dual-objective. Secondly, sensitivity analysis is used to determine the combination of stator inner diameter, air gap length, permanent magnet thickness and core length as the design variables. 29 groups of sample data are obtained through BBD experimental design. Regression equations of exoergic efficiency and output power are obtained according to RSM, and the reliability of the model is verified by variance analysis. Finally, taking the maximum efficiency and output power as the double objectives of optimization, the optimal structural parameters are obtained by the combination of RSM and AMGA, so as to improve the productivity efficiency of the generator and reduce the power pulsation, which can obviously enhance the power quality.
关键词
风力机 /
永磁同步发电机 /
分析法 /
多目标优化 /
敏感性分析
Key words
wind turbines /
permanent magnet synchronous generator /
exergy analysis /
multi-objective optimization /
sensitivity analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱军. 我国风电开发利用创新与发展建议[J]. 中国工程科学, 2015, 17(3): 79-83.
ZHU J.The wind power exploitation with innovation in China and development proposals[J]. Strategic study of CAE, 2015, 17(3): 79-83.
[2] 查冬兰. “碳达峰、碳中和”愿景下尤应重视引导行为节能[N]. 中国能源报, 2021-04-12(028).
ZHA D L. Carbon peaking and carbon neutrality goals and reflections on China’s energy transition part Ⅰ——energy transition, carbon peaking and carbon neutrality[N]. China energy news, 2021-04-12(028).
[3] 苏胜, 司宁宁, 赵志刚, 等. 1000 W超超临界二次再热机组分析[J]. 华中科技大学学报(自然科学版), 2017, 45(3): 94-98.
SU S, SI N N, ZHAO Z G, et al.Exergy analysis of 1000 Wdouble reheat ultra-supercritical power plant[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2017, 45(3): 94-98.
[4] ABUELNUOR A A A, SAQR K M, MOHIELDEIN S A A, et al. Exergy analysis of Garri “2” 180 MW combined cycle power plant[J]. Renewable and sustainable energy reviews, 2017, 79: 960-969.
[5] 温彩凤, 高祥雨, 曹阳, 等. 基于分析法的风电系统储能关键特性研究[J]. 太阳能学报, 2020, 41(7): 85-91.
WEN C F, GAO X Y, CAO Y, et al.Research on key characteristics of in energy storage wind power system based on exergy analysis[J]. Acta energiae solaris sinica, 2020, 41(7): 85-91.
[6] BAMISILE O, HUANG Q, DAGBASI M, et al.Concentrated solar powered novel multi-generation system: a energy, exergy, and environmental analysis[J]. Journal of solar energy engineering, 2020, 142(5): 1-12.
[7] 么艳香, 叶林, 屈晓旭, 等. 风-光-水多能互补发电系统分析模型[J]. 电力自动化设备, 2019, 39(10): 55-60.
YAO Y X, YE L, QU X X, et al.Exergy analysis model of wind-solar-hydro multi-energy generation power system[J]. Electric power automation equipment, 2019, 39(10): 55-60.
[8] 郭艳飞, 吴强, 程林, 等. 基于效率的综合能源系统能效分析模型[J]. 可再生能源, 2017, 35(9): 1387-1394.
GUO Y F, WU Q, CHENG L, et al.Efficiency analysis model of integrated energy system energy based on the exergy efficiency[J]. Renewable energy resources, 2017, 35(9): 1387-1394.
[9] WEN C F, ZHANG J X, WANG C, et al.An analysismethod for exergy efficiency of wind turbines based onexperiment and simulation[J]. Energy sources part A: recovery,utilization,and environmental effects, 2019, 42(9): 1-13.
[10] SEZER N, KOC M.Development and performance assessment of a new integrated solar, wind, and osmoticpower system for multigeneration, based on thermodynamic principles[J]. Energy conversion andmanagement, 2019, 188(5): 94-111.
[11] 曹阳, 温彩凤, 刘珍, 等. 基于RSM和NSGA-Ⅱ法的风电系统经济优化研究[J]. 太阳能学报, 2022, 43(1): 161-168.
CAO Y, WEN C F, LIU Z, et al.Multi-objective optimization of wind power system based on RSM and NSGA-Ⅱ methods[J]. Acta energiae solaris sinica, 2022, 43(1): 161-168.
[12] LEE S L, SHIN S J.Wind turbine blade optimal design considering multi-parameters and response surface method[J]. Energies, 2020, 13(7): 1-23.
基金
国家自然科学基金(51966013); 内蒙古自然科学基金杰青项目(2023JQ04)