基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测

李宏扬, 高丙朋

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 292-300.

PDF(3337 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3337 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 292-300. DOI: 10.19912/j.0254-0096.tynxb.2022-0581

基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测

  • 李宏扬, 高丙朋
作者信息 +

SHORT-TERM PV POWER FORECASTING BASED ON IMPROVED VMD AND SNS-ATTENTION-GRU

  • Li Hongyang, Gao Bingpeng
Author information +
文章历史 +

摘要

针对光伏发电系统预测精度不高等问题,建立以门控循环单元(GRU)为基础的预测模型。使用社交网络搜索算法(social network search)和注意力机制(attention)相结合对构建的门控循环单元进行参数优化,采用K-均值对天气类型进行划分,提出材料生成算法(material generation)对变分模态分解中的模态分解数量和惩罚因子进行寻优来确定最佳组合,实现对初始数据的分解操作。利用社交网络搜索算法超参数优化后的门控循环单元对时序特征进行提取,引入注意力机制对时序输入中重要信息的关注进行加强。选用新疆某光伏电站2021年运行数据进行分析,仿真结果表明:所提出的MGA-VMD-SNS-Attention-GRU预测模型能有效提升光伏输出功率预测精度。与SVR、Elman模型相比,平均MAPE分别降低8.14%和8.59%。

Abstract

A prediction model based on gated recurrent unit is developed to address the problem of low prediction accuracy of photovoltaic power generation systems. A social network algorithm and an attention mechanism are used to optimize the parameters of the gated recurrent unit, K-means is used to classify the weather types, and a material generation algorithm is proposed to find the best combination of the number of mode decompositions and penalty factors in the variational mode decomposition to realize the decomposition of the initial data. The gated recurrent unit after hyperparameter optimization of social network search algorithm is used to extract the temporal features, and an attention mechanism is introduced to enhance the attention to important information in the temporal input. The operation data of a PV plant in south Xinjiang in 2021 is selected for analysis. The simulation results show that the proposed MGA-VMD-SNS-Attention-GRU prediction model can effectively improve the PV output power prediction accuracy. The average MAPE is decreased by 8.14% and 8.59% compared with SVR and Elman models, respectively.

关键词

光伏发电 / 功率预测 / 门控循环单元 / 变分模态分解 / 注意力机制

Key words

photovoltaic power generation / power forecasting / gated cycle unit / variational mode decomposition / attention mechanism

引用本文

导出引用
李宏扬, 高丙朋. 基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报. 2023, 44(8): 292-300 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0581
Li Hongyang, Gao Bingpeng. SHORT-TERM PV POWER FORECASTING BASED ON IMPROVED VMD AND SNS-ATTENTION-GRU[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 292-300 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0581
中图分类号: TM615   

参考文献

[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
TAN X D, LIU J, XU Z C,et al.Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric power, 2021, 54(5): 1-6.
[2] 陈炜, 艾欣, 吴涛, 等. 光伏并网发电系统对电网的影响研究综述[J]. 电力自动化设备, 2013, 33(2): 26-32,39.
CHEN W, AI X, WU T, et al.Influence of grid-connected photovoltaic system on power network[J]. Electric power automation equipment, 2013, 33(2): 26-32,39.
[3] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[4] 丁明, 王磊, 毕锐. 基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J]. 电力系统保护与控制, 2012, 40(11): 93-99,148.
DING M, WANG L, BI R.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J]. Power system protection and control, 2012, 40(11): 93-99,148.
[5] VANDEVENTER W, JAMEI E, THIRUNAVUKKARASU G S, et al.Short-term PV power forecasting using hybrid GASVM technique[J]. Renewable energy, 2019, 140: 367-379.
[6] LIU L, LIU F, ZHENG Y L.A novel ultra-short-term PV power forecasting method based on DBN-based Takagi-Sugeno fuzzy model[J]. Energies, 2021, 14(20): 6447.
[7] 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823.
ZHAO B B, WANG Y, WANG B, et al.Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable energy resources, 2019, 37(6): 820-823.
[8] 李练兵, 张佳, 韩靖楠, 等. 基于Elman算法的光伏阵列的短期功率预测研究[J]. 太阳能学报, 2017, 38(6): 1560-1566.
LI L B, ZHANG J, HAN J N, et al.Short-term power forecast research of PV array based on Elman algorithm[J]. Acta energiae solaris sinica, 2017, 38(6): 1560-1566.
[9] 王超, 刘世明. 基于相似日原理和CPSO-Elman模型的光伏电站短期功率预测[J]. 能源与环保, 2022, 44(2): 208-214.
WANG C, LIU S M.Shortterm power prediction of photovoltaic power station based on similar day principle and CPSO-Elman model[J]. China energy and environmental protection, 2022, 44(2): 208-214.
[10] 李多, 董海鹰, 杨立霞. 基于EMD与ELM的光伏电站短期功率预测[J]. 可再生能源, 2016, 34(2): 173-177.
LI D, DONG H Y, YANG L X.The short-term power forecasting of photovoltaic plant based on EMD-ELM[J]. Renewable energy resources, 2016, 34(2): 173-177.
[11] 郑小霞, 陈广宁, 任浩翰, 等. 基于改进VMD和深度置信网络的风机易损部件故障预警[J]. 振动与冲击, 2019, 38(8): 153-160,179.
ZHENG X X, CHEN G N, REN H H, et al.Fault detection of vulnerable units of wind turbine based on improved VMD and DBN[J]. Journal of vibration and shock, 2019, 38(8): 153-160,179.
[12] 向玲, 李京蓄, 王朋鹤, 等. 基于VMD-FIG和参数优化GRU的风速多步区间预测[J]. 太阳能学报, 2021, 42(10): 237-242.
XIANG L, LI J X, WANG P H, et al.Wind speed multistep interval forecasting based on VMD-FIG and parameter-optimized GRU[J]. Acta energiae solaris sinica, 2021, 42(10): 237-242.
[13] 高金兰, 李豪, 邓蒙. 基于GAVMD-SGRU模型的风电场短期功率预测[J]. 吉林大学学报(信息科学版), 2021, 39(6): 647-655.
GAO J L, LI H, DENG M.Short term power prediction of wind farm based on GAVMD-SGRU model[J]. Journal of Jilin University(information science edition), 2021, 39(6): 647-655.
[14] SHARMA N, MANGLA M, YADAV S, et al.A sequential ensemble model for photovoltaic power forecasting[J]. Computers & electrical engineering, 2021, 96: 107484.
[15] LIU S Y, HAO X G, MENG Z J, et al.Application of SRNN-GRU in photovoltaic power forecasting[J]. E3S web of conferences, 2021, 256: 02001.
[16] 刘擘龙, 张宏立, 王聪, 等. 基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
LIU B L, ZHANG H L, WANG C, et al.Ultra-short-term wind speed prediction based on sequence-to-sequence and attention mechanism[J]. Acta energiae solaris sinica, 2021, 42(9): 286-294.
[17] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[18] 刘可真, 阮俊枭, 赵现平, 等. 基于麻雀搜索优化的Attention-GRU短期负荷预测方法[J]. 电力系统及其自动化学报, 2022, 34(4): 99-106.
LIU K Z, RUAN J X, ZHAO X P, et al.Short-term load forecasting method based on sparrow search optimized Attention-GRU[J]. Proceedings of the CSU-EPSA, 2022, 34(4): 99-106.
[19] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
[20] TALATAHARI S, AZIZI M, GANDOMI A H.Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems[J]. Processes, 2021, 9(5): 859.
[21] BAYZIDI H, TALATAHARI S, SARAEE M,et al.Social network search for solving engineering optimization problems[J]. Computational intelligence and neuroscience, 2021, 2021: 8548639.

基金

新疆维吾尔自治区自然科学基金(2019D01C079)

PDF(3337 KB)

Accesses

Citation

Detail

段落导航
相关文章

/