RESEARCH PROGRESS OF ANTIBACTERIAL SOLAR EVAPORATORS
Yang Xiaoqin1, Tang Jiebin1,2, Li Wei1, Lu Xi1, Song Zhaoping1
Author information+
1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; 2. Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Ji'nan 250022, China
Solar interfacial evaporation is a technology of efficient utilization of solar energy proposed in recent years. Solar evaporator is the key component of solar interfacial evaporation system. The antibacterial performance of solar evaporator plays an important role in seawater desalination. In this review, the antibacterial materials and their antibacterial mechanism are introduced, and then the research progress and application of the antibacterial solar evaporators are summarized respectively. In addition, the prospect and future challenges of antibacterial solar evaporators are discussed, so as to provide reference for the follow-up research and development of antibacterial solar evaporators and their application in solar desalination.
Yang Xiaoqin, Tang Jiebin, Li Wei, Lu Xi, Song Zhaoping.
RESEARCH PROGRESS OF ANTIBACTERIAL SOLAR EVAPORATORS[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 345-354 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0586
中图分类号:
TK519
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SONG J E, LI T A, WRIGHT-CONTRERAS L, et al.A review of the current status of small-scale seawater reverse osmosis desalination[J]. Water international, 2017, 42(5): 618-631. [2] TAO P, NI G, SONG C Y, et al.Solar-driven interfacial evaporation[J]. Nature energy, 2018, 3(12): 1031-1041. [3] KIM J T, HWANG J W, KIM S H, et al.Interfacial solar evaporator-physical principles and fabrication methods[J]. International journal of precision engineering and manufacturing-green technology, 2021, 8(4): 1347-1367. [4] XU Y, MA J X, HAN Y, et al.Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification[J]. ACS sustainable chemistry & engineering, 2019, 7(5): 5476-5485. [5] HUANG W, SU P W, CAO Y, et al.Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation[J]. Nano energy, 2020, 69: 104465. [6] WALDMAN A J, BALSKUS E P.The human microbiota, infectious disease, and global health: challenges and opportunities[J]. ACS infectious diseases, 2018, 4(1): 14-26. [7] NIÑO-MARTÍNEZ N, SALAS OROZCO M F, MARTÍNEZ-CASTAÑÓN G A, et al. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles[J]. International journal of molecular sciences, 2019 , 20(11): 2808. [8] VALLYATHAN V, SHI X.The role of oxygen free radicals in occupational and environmental lung diseases[J]. Environmental health perspectives, 1997, 105(Suppl 1): 165-177. [9] SLAVIN Y N, ASNIS J, HÄFELI U O, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity[J]. Journal of nanobiotechnology, 2017, 15(1): 1-20. [10] JIAO J Y, ZHANG S T, QU X H, et al.Recent advances in research on antibacterial metals and alloys as implant materials[J]. Frontiers in cellular and infection microbiology, 2021, 11: 693939. [11] BIRBEN E, SAHINER U M, SACKESEN C, et al.Oxidative stress and antioxidant defense[J]. World allergy organization journal, 2012, 5(1): 9-19. [12] MANKE A, WANG L Y, ROJANASAKUL Y.Mechanisms of nanoparticle-induced oxidative stress and toxicity[J]. BioMed research international, 2013, 2013: 942916. [13] KIM S Y, PARK C, JANG H J, et al.Antibacterial strategies inspired by the oxidative stress and response networks[J]. Journal of microbiology, 2019, 57(3): 203-212. [14] ANGELOVA P R, ABRAMOV A Y.Functional role of mitochondrial reactive oxygen species in physiology[J]. Free radical biology and medicine, 2016, 100: 81-85. [15] MARYANOVICH M, GROSS A.A ROS rheostat for cell fate regulation[J]. Trends in cell biology, 2013, 23(3): 129-134. [16] GOLD K, SLAY B, KNACKSTEDT M, et al.Antimicrobial activity of metal and metal-oxide based nanoparticles[J]. Advanced therapeutics, 2018, 1(3): 1700033. [17] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al.Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications[J]. Bioactive materials, 2021, 6(12): 4470-4490. [18] LIKODIMOS V.Advanced photocatalytic materials[J]. Materials, 2020, 13(4): 821. [19] TRUFFIER-BOUTRY D, FIORENTINO B, BARTOLOMEI V, et al.Characterization of photocatalytic paints:a relationship between the photocatalytic properties-release of nanoparticles and volatile organic compounds[J]. Environmental science: nano, 2017, 4(10): 1998-2009. [20] ELGOHARY E A, MOHAMED Y M A, EL NAZER H A, et al. A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms[J]. Catalysts, 2021, 11(12): 1498. [21] WANG L Z, ZHAO J H, LIU H M, et al.Design, modification and application of semiconductor photocatalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018 , 93: 590-602. [22] LIU Y, HUANG J, FENG X H, et al.Thermal-sprayed photocatalytic coatings for biocidal applications: a review[J]. Journal of thermal spray technology, 2021, 30(1/2): 1-24. [23] GONG M F, XIAO S L, YU X, et al.Research progress of photocatalytic sterilization over semiconductors[J]. RSC advances, 2019, 9(34): 19278-19284. [24] LIU Y E, ZENG X K, HU X Y, et al.Solar-driven photocatalytic disinfection over 2D semiconductors: the generation and effects of reactive oxygen species[J]. Solar RRL, 2021, 5(6): 2000594. [25] ZHOU Z L, LI B, LIU X M, et al.Recent progress in photocatalytic antibacterial[J]. ACS applied bio materials, 2021, 4(5): 3909-3936. [26] EMAM H E.Antimicrobial cellulosic textiles based on organic compounds[J]. 3 biotech, 2019, 9(1): 1-14. [27] GUO Y H, DUNDAS C M, ZHOU X Y, et al.Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation[J]. Advanced materials, 2021, 33(35): 2102994. [28] MENG H, LI Y T, FAUST M, et al.Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety[J]. Acta biomaterialia, 2015, 17: 160-169. [29] KROGSGAARD M, NUE V, BIRKEDAL H.Mussel-inspired materials: self-healing through coordination chemistry[J]. Chemistry-A European journal, 2016, 22(3): 844-857. [30] FU Y, YANG L, ZHANG J H, et al.Polydopamine antibacterial materials[J]. Materials horizons, 2021, 8(6): 1618-1633. [31] EBRAHIMI A, GOHARSHADI E K, MOHAMMADI M.Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent[J]. Materials chemistry and physics, 2022, 275: 125258. [32] WANG W, XUE C, MAO X.Chitosan: structural modification, biological activity and application[J]. International journal of biological macromolecules, 2020, 164: 4532-4546. [33] ANDRES Y, GIRAUD L, GERENTE C, et al.Antibacterial effects of chitosan powder: mechanisms of action[J]. Environmental technology, 2007, 28(12): 1357-1363. [34] YAN D Z, LI Y, LIU Y L, et al.Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections[J]. Molecules, 2021, 26(23): 7136. [35] LIMA V N, OLIVEIRA-TINTINO C D M, SANTOS E S, et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol[J]. Microbial pathogenesis, 2016, 99: 56-61. [36] MATOS M, CLARO F C, LIMA T A M, et al. Acetone:water fractionation of pyrolytic lignin improves its antioxidant and antibacterial activity[J]. Journal of analytical and applied pyrolysis, 2021, 156: 105175. [37] REMPE C S, BURRIS K P, LENAGHAN S C, et al.The potential of systems biology to discover antibacterial mechanisms of plant phenolics[J]. Frontiers in microbiology, 2017, 8: 422. [38] QU W, ZHAO H N, ZHANG Q, et al.Multifunctional Au/Ti3C2 photothermal membrane with antibacterial ability for stable and efficient solar water purification under the full spectrum[J]. ACS sustainable chemistry & engineering, 2021, 9(34): 11372-11387. [39] YANG J, CHEN Y, JIA X H, et al.Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(41): 47029-47037. [40] EBRAHIMI A, GOHARSHADI E K, MOHAMMADI M.Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent[J]. Materials chemistry and physics, 2022, 275: 125258. [41] MOGHAYEDI M, GOHARSHADI E K, GHAZVINI K, et al.Improving antibacterial activity of phosphomolybdic acid using graphene[J]. Materials chemistry and physics, 2017, 188: 58-67. [42] XU Y, MA J X, HAN Y, et al.A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity[J]. Chemical engineering journal, 2020, 384:123379. [43] WANG Z F, NIU J, WANG J X, et al.Rational design of photothermal and anti-bacterial foam with macroporous structure for efficient desalination of water[J]. Frontiers in chemistry, 2022, 10: 912489. [44] LI S A, LIU D C, HE Y S, et al.Multifunction hybrid aerogel capable of reducing silver ions during solar-driven interfacial evaporation[J]. ACS sustainable chemistry & engineering, 2022, 10(23): 7463-7472. [45] WANG S, NIU Y, YAN L J, et al.Recyclable solar evaporator based on hollow glass microspheres for water purification and desalination[J]. Journal of environmental chemical engineering, 2022, 10(5): 108254. [46] LI Y L, SHI X L, SUN L J, et al.Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation[J]. Desalination, 2021, 515: 115192. [47] LI Y L, ZHAO M Y, XU Y S, et al.Manipulating light trapping and water vaporization enthalpy via porous hybrid nanohydrogels for enhanced solar-driven interfacial water evaporation with antibacterial ability[J]. Journal of materials chemistry A, 2019, 7(47): 26769-26775. [48] ZHAO L, YANG Q Z, GUO W, et al.Co2.67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications[J]. ACS applied materials & interfaces, 2019, 11(23): 20820-20827. [49] ZHA X J, ZHAO X, PU J H, et al.Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS applied materials & interfaces, 2019, 11(40): 36589-36597. [50] LI Y S, WU T, SHEN H, et al.Flexible MXene-based Janus porous fibrous membranes for sustainable solar-driven desalination and emulsions separation[J]. Journal of cleaner production, 2022, 347: 131324. [51] XIAO S N, ZHAO X W, LIU S Y, et al.rGO-CuOx composites reduced by solid-phase microwave thermal shock for high-efficient seawater desalination and purification[J]. Advanced sustainable systems, 2022, 6(5): 2100500. [52] HAO L, LIU N, BAI H Y, et al.High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels[J]. Journal of colloid and interface science, 2022, 608: 840-852. [53] 姜婷婷. 普鲁士蓝基光热纳米材料的构筑及其杀菌性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019 . JIANG T T.Fabrication and sterilization properties of Prussian blue-based photothermal nanomaterials[D]. Harbin: Harbin Institute of Technology, 2019. [54] PEDDINTI B S T, SCHOLLE F, VARGAS M G, et al. Inherently self-sterilizing charged multiblock polymers that kill drug-resistant microbes in minutes[J]. Materials horizons, 2019, 6(10): 2056-2062. [55] PENG B L, GAO Y J, LYU Q Q, et al.Cationic photothermal hydrogels with bacteria-inhibiting capability for freshwater production via solar-driven steam generation[J]. ACS applied materials & interfaces, 2021, 13(31): 37724-37733. [56] XU T, XU Y X, WANG J Y, et al.Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel[J]. Chemical engineering journal, 2021, 415: 128893. [57] CHEN S N, MA D N, GAO W X, et al.High efficiency solar steam generator comprising sodium alginate-polydopamine hydrogel for photothermal water sanitation[J]. Sustainable energy technologies and assessments, 2022, 51: 101998.