当前实用和未来发展Pt-非Pt氧还原电催化剂研究进展

程庆庆, 陈驰, 邹亮亮, 邹志青, 杨辉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 335-344.

PDF(4739 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4739 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 335-344. DOI: 10.19912/j.0254-0096.tynxb.2022-0588

当前实用和未来发展Pt-非Pt氧还原电催化剂研究进展

  • 程庆庆, 陈驰, 邹亮亮, 邹志青, 杨辉
作者信息 +

ADVANCES IN CURRENT PRACTICAL AND FUTURE DEVELOPMENT OF Pt-NON-Pt OXYGEN REDUCTION REACTION ELECTROCATALYST

  • Cheng Qingqing, Chen Chi, Zou Liangliang, Zou Zhiqing, Yang Hui
Author information +
文章历史 +

摘要

燃料电池阴极侧氧还原反应由于其迟缓的动力学,使得贵金属铂成为最为高效的电催化剂,成本高昂,限制燃料电池规模化应用。开发低成本、高性能、可实用氧还原电催化剂尤为重要。基于课题组多年在实用化燃料电池氧还原电催化剂的研究情况,综述面向当前实用和未来发展的铂-非铂电催化剂的研究进展。重点介绍实用化高载量、高活性、高结构稳定性铂基电催化剂合成策略以及在燃料电池膜电极中的性能高效表达,同时阐述非铂碳基催化剂理性设计、可控制备。此外,对该研究方向的发展进行展望,以期加速燃料电池关键材料国产化。

Abstract

The sluggish kinetic of oxygen reduction reaction (ORR) at the cathode of the fuel cells makes the platinum (Pt) as the state-of-the-art electrocatalyst, which limits the large-scale application of fuel cells. It is thus particularly urgent to develop the low-cost, high-performance and practical ORR electrocatalysts. In this paper, the research progress of Pt and non-Pt electrocatalysts for current practical and future development is reviewed based on our previous research in practical electrocatalysts towards ORR for many years. The synthesis strategy of Pt-based electrocatalysts with high metal loading, high activity, excellent structural stability and efficient expression of performance in fuel cells are emphasized. At the same time, the rational design and controllable synthesis of non-Pt carbon-based materials are elaborated. In addition, the further development of this research field is prospected to accelerate the localization of fuel cells.

关键词

燃料电池 / 氧还原反应 / 金属间化合物 / 碳基材料 / 实用化催化剂

Key words

fuel cell / oxygen reduction reaction / intermetallic compound / carbon-based materials / practical electrocatalysts

引用本文

导出引用
程庆庆, 陈驰, 邹亮亮, 邹志青, 杨辉. 当前实用和未来发展Pt-非Pt氧还原电催化剂研究进展[J]. 太阳能学报. 2022, 43(6): 335-344 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0588
Cheng Qingqing, Chen Chi, Zou Liangliang, Zou Zhiqing, Yang Hui. ADVANCES IN CURRENT PRACTICAL AND FUTURE DEVELOPMENT OF Pt-NON-Pt OXYGEN REDUCTION REACTION ELECTROCATALYST[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 335-344 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0588
中图分类号: TK513.5   

参考文献

[1] BELL A T.The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.
[2] CHEN S P, LI M F, GAO M Y, et al.High-performance Pt-Co nanoframes for fuel-cell electrocatalysis[J]. Nano letters, 2020, 20(3): 1974-1979.
[3] MEHMOOD A, GONG M, JAOUEN F, et al.High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells[J]. Nature catalysis, 2022, 5(4): 311-323.
[4] GASTEIGER H, YAN S G.Dependence of PEM fuel cell performance on catalyst loading[J]. Journal of power sources, 2004, 127(1-2): 162-171.
[5] SHEN L X, MA M, TU F D, et al.Recent advances in high-loading catalysts for low-temperature fuel cells: From nanoparticle to single atom[J]. SusMat, 2021, 1(4): 569-592.
[6] JOH H I, SEO S J, KIM H T, et al.Preparation of Pt/C electrocatalysts using an incipient precipitation method[J]. Korean journal of chemical engineering, 2010, 27(1): 45-48.
[7] PAK C H.High loading supported carbon catalyst, method of preparing the same, catalyst electrode including the same, and fuel cell including the catalyst electrode[P]. Google patents, 2006.
[8] SONG S Q, WANG Y, SHEN P K.Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction[J]. Journal of power sources, 2007, 170(1): 46-49.
[9] CAO J Y, DU C, WANG S C, et al.The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation[J]. Electrochemistry communications, 2007, 9(4): 735-740.
[10] HUANG Q H, TAO F F, ZOU L L, et al.One-step synthesis of Pt nanoparticles highly loaded on graphene aerogel as durable oxygen reduction electrocatalyst[J]. Electrochimica acta, 2015, 152: 140-145.
[11] JIA Q Y, LIANG W, BATES M K, et al.Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: In situ observation of the linear composition-strain-activity relationship[J]. ACS nano, 2015, 9(1): 387-400.
[12] STEPHENS I E, BONDARENKO A S, GRØNBJERG U, et al. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys[J]. Energy & environmental science, 2012, 5(5): 6744-6762.
[13] WANG C, CHI M F, LI D G, et al.Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011, 133(36): 14396-14403.
[14] HAN B H, CARLTON C E, SUNTIVICH J, et al.Oxygen reduction activity and stability trends of bimetallic Pt0.5M0.5 nanoparticle in acid[J]. Journal of physical chemistry C, 2015, 119(8): 3971-3978.
[15] SHUKLA A, NEERGAT M, BERA P, et al.An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells[J]. Journal of electroanalytical chemistry, 2001, 504(1): 111-119.
[16] XIONG L, KANNAN A, MANTHIRAM A.Pt-M(M=Fe,Co,Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells[J]. Electrochemistry communications, 2002, 4(11): 898-903.
[17] HUANG Q H, YANG H, TANG Y W, et al.Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction[J]. Electrochemistry communications, 2006, 8(8): 1220-1224.
[18] MAYRHOFER K J, JUHART V, HARTL K, et al.Adsorbate-induced surface segregation for core-shell nanocatalysts[J]. Angewandte chemie international edition, 2009, 48(19): 3529-3531.
[19] DU C, LI P, YANG F L, et al.Monodisperse palladium sulfide as efficient electrocatalyst for oxygen reduction reaction[J]. ACS applied materials & interfaces, 2018, 10(1): 753-761.
[20] WANG Y Y, CHEN D J, TONG Y J.Mechanistic insight into sulfide-enhanced oxygen reduction reaction activity and stability of commercial Pt black: An in situ Rraman spectroscopic study[J]. ACS catalysis, 2016, 6(8): 5000-5004.
[21] XU B L, PARK I S, LI Y, et al.An in situ sers investigation of the chemical states of sulfur species adsorbed onto Pt from different sulfur sources[J]. Journal of electroanalytical chemistry, 2011, 662(1): 52-56.
[22] VO DOAN T T, WANG J, POON K C, et al. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction[J]. Angewandte chemie international edition, 2016, 55(24): 6842-6847.
[23] JIANG K, XU K, ZOU S Z, et al.B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions[J]. Journal of the American Chemical Society, 2014, 136(13): 4861-4864.
[24] XIONG Y J, MA Y N, ZOU L L, et al.N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction[J]. Journal of catalysis, 2020, 382: 247-255.
[25] LU B A, SHEN L F, LIU J, et al.Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction[J]. ACS catalysis, 2020, 11(1): 355-363.
[26] WANG D L, XIN H L, HOVDEN R, et al.Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1): 81-87.
[27] LI J R, XI Z, PAN Y T, et al.Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. Journal of the American Chemical Society, 2018, 140(8): 2926-2932.
[28] 李峥嵘, 申涛, 胡冶州, 等. 有序金属间化合物电催化剂在燃料电池中的应用进展[J]. 物理化学学报, 2021, 37(9): 2010029-2010050.
LI Z R, SHEN T, HU Y Z, et al.Progress on ordered intermetallic electrocatalysts for fuel cells application[J]. Acta physico-chimica sinica, 2021, 37(9): 2010029-2010050.
[29] 孙华, 戚頔, 刘辉, 等. Pt基金属间化合物氧还原催化剂研究进展[J]. 材料科学, 2019, 9(5): 479-488.
SUN H, QI D, LIU H, et al.Recent advances in Pt-based ordered intermetallic catalysts for oxygen reduction reaction[J]. Material sciences, 2019, 9(5): 479-488.
[30] ZOU L L, FAN J, ZHOU Y, et al.Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions[J]. Nano research, 2015, 8(8): 2777-2788.
[31] ZOU L, LI J L, YUAN T, et al.Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst[J]. Nanoscale, 2014, 6(18): 10686-10692.
[32] YANG W H, ZOU L L, HUANG Q H, et al.Lattice contracted ordered intermetallic core-shell PtCo@Pt nanoparticles: Synthesis, structure and origin for enhanced oxygen reduction reaction[J]. Journal of the Electrochemical Society, 2017, 164(6): H331-H337.
[33] WANG Y M, ZOU L L, HUANG Q H, et al.3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst[J]. International journal of hydrogen energy, 2017, 42(43): 26695-26703.
[34] CHENG Q Q, YANG S, FU C H, et al.High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs[J]. Energy & environmental science, 2022, 15(1): 278-286.
[35] QI Z Y, XIAO C X, LIU C, et al.Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction[J]. Journal of the American Chemical Society, 2017, 139(13): 4762-4768.
[36] KIM J W, YANG S G, LEE H J.Platinum-titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability[J]. Electrochemistry communications, 2016, 66: 66-70.
[37] LI Q, WU L H, WU G, et al.New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid[J]. Nano letters, 2015, 15(4): 2468-2473.
[38] LIANG J S, LI N, ZHAO Z L, et al.Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode[J]. Angewandte chemie, international edition, 2019, 58(43): 15471-15477.
[39] ZHAO Y G, WANG C, LIU J J, et al.PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability[J]. Nanoscale, 2018, 10(19): 9038-9043.
[40] CHUNG D Y, JUN S W, YOON G, et al.Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137(49): 15478-15485.
[41] YIN P, HU S L, QIAN K, et al.Quantification of critical particle distance for mitigating catalyst sintering[J]. Nature communications, 2021, 12(1): 4865.
[42] YIN P, LUO X, MA Y F, et al.Sulfur stabilizing metal nanoclusters on carbon at high temperatures[J]. Nature communications, 2021, 12(1): 3135.
[43] YANG C L, WANG L N, YIN P, et al.Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.
[44] ZHANG B T, FU G T, LI Y T, et al.General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angewandte chemie, international edition, 2020, 132(20): 7931-7937.
[45] SHAO M H, CHANG Q W, DODELET J P, et al.Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical reviews, 2016, 116(6): 3594-3657.
[46] ZHANG J C, YANG H B, LIU B.Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review[J]. Advanced energy materials, 2020, 11(3): 2002473.
[47] ZHANG H G, OSGOOD H, XIE X, et al.Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks[J]. Nano energy, 2017, 31: 331-350.
[48] ZHANG H G, HWANG S Y, WANG M, et al.Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149.
[49] LI J Z, ZHANG H G, SAMARAKOON W, et al.Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction[J]. Angewandte chemie international edition, 2019, 58(52): 18971-18980.
[50] HE Y H, HWANG S Y, CULLEN D A, et al.Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy[J]. Energy & environmental science, 2019, 12(1): 250-260.
[51] WAN X, LIU X F, LI Y C, et al.Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature catalysis, 2019, 2(3): 259-268.
[52] JIAO L, LI J, RICHARD L L, et al.Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nature materials, 2021, 20(10): 1385-1391.
[53] ZHOU H, YANG T, KOU Z K, et al.Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction[J]. Angewandte chemie international edition, 2020, 59(46): 20465-20469.
[54] LI Y Y, ZHANG P Y, WAN L Y, et al.A general carboxylate-assisted approach to boost the ORR performance of ZIF-derived Fe/N/C catalysts for proton exchange membrane fuel cells[J]. Advanced functional materials, 2021, 31(15): 2009645.
[55] ZOU J, CHEN C, CHEN Y B, et al.Facile steam-etching approach to increase the active site density of an ordered porous Fe-N-C catalyst to boost oxygen reduction reaction[J]. ACS catalysis, 2022, 4517-4525.
[56] CHENG Q Q, YANG L J, ZOU L L, et al.Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction[J]. ACS catalysis, 2017, 7(10): 6864-6871.
[57] CHENG Q Q, HAN S B, MAO K, et al.Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability[J]. Nano energy, 2018, 52: 485-493.
[58] ZANG J, WANG F T, CHENG Q Q, et al.Cobalt/Zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells[J]. Journal of materials chemistry A, 2020, 8: 3686-3691.
[59] BANHAM D, YE S Y, PEI K T, et al.A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of power sources, 2015, 285: 334-348.
[60] RÉGIS C U I K, MICHEL L, VASSILI G, et al. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar+NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy & environmental science, 2018, 11: 365-382.
[61] XIE X, HE C, LI B, et al.Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nature catalysis, 2020, 3(12): 1044-1054.
[62] CHEN L N, YU W S, WANG T, et al.Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst[J]. Science China chemistry, 2019, 63(2): 198-202.
[63] WANG J, HUANG Z Q, LIU W, et al.Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
[64] CHENG X Y, YAN W, HAN Y, et al.Nano-geometric deformation and synergistic Co nanoparticles—Co-N4 composite sites for proton exchange membrane fuel cells[J]. Energy & environmental science, 2021, 14: 5958-5967.
[65] CHEN Y B, ZHU Y P, ZOU J, et al, Vicinal Co atom-coordinated Fe-N-C catalysts to boost the oxygen reduction reaction[J]. Journal of materials chemistry A, 2022, 10: 9886-9891.
[66] XIE H, XIE X H, HU G X, et al.Ta-tiox nanoparticles as radical scavengers to improve the durability of Fe-N-C oxygen reduction catalysts[J]. Nature energy, 2022, 7(3): 281-289.

基金

上海市启明星计划(21QA1410100); 中科院科技服务网络计划(KFJ-STS-QYZX102); 国家自然科学基金(22002184)

PDF(4739 KB)

Accesses

Citation

Detail

段落导航
相关文章

/