针对传统能量管理策略经济性差、调峰能力弱的问题,提出一种基于分布式发电的储能系统(ESS)能量管理策略。首先结合Pareto最优理论,建立以降低能源成本与平滑负荷峰谷效应为目标的需求侧优化调度模型。在首次优化过程中,采用具有自适应变异与动态更新惯性权重功能的改进粒子群算法(IPSO)求解最优经济指标。进而以该指标作为约束,对调度区间进行划分,实现目标的完全解耦,并引入惩罚函数获得增广目标函数。最终通过贪婪算法(GA)进行二次优化,可求得在最佳经济效益的前提下最大程度平滑负荷峰谷效应的非支配调度向量。仿真结果表明:IPSO具有较高的收敛速度与精度,所提策略在3种场景下分别降低用电成本18.6%、32.8%、17.3%,负荷峰均较首次优化降低21.2%、10.3%、20.1%,并通过多场景数据集下的仿真验证了结论的普适性。
Abstract
Focused on the poor economy and weak peak shaving performance of traditional energy management strategies, an energy management strategy for energy storage system (ESS) based on distributed generation is proposed. Firstly, a demand-side optimal scheduling model aiming at energy cost diminution and load peak valley effect smooth is established combined with Pareto optimization theory. To obtain the optimal economic indicators, an improved particle swarm algorithm (IPSO) with adaptive variation and dynamic updating of inertia weights is applied during the first optimization process. Then, the scheduling interval is divided by the indicator as a constraint to achieve the complete decoupling of the target, while a penalty function is introduced to acquire an augmented objective function. Finally, the greedy algorithm(GA) is used for secondary optimiation, and the non-dominated scheduling vector which can smooth the load peak-valley effect to the greatest extent under the premise of the best economic benefit can be obtained. The simulation results show that IPSO strategy with high convergence speed and accuracy, can reduce the electricity cost by 18.6%, 32.8% and 17.3%, and gets 21.2%, 10.3% has and 20.1% load peak-to-average rate reduction compared with the first optimization in three scenarios, respectively. The generality and reasonableness of the conclusions verified by the typical data set.
关键词
分布式发电 /
储能 /
能量管理 /
多目标优化 /
Pareto理论
Key words
distributed power generation /
energy storage /
energy management /
multi objective optimization /
Pareto principle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15): 1-11.
DONG Z Y, ZHAO J H, WEN F S, et al.From smart grid to energy internet: basic concept and research framework[J]. Automation of electric power systems, 2014, 38(15): 1-11.
[2] ALLAN G, EROMENKO I, GILMARTIN M, et al.The economics of distributed energy generation: a literature review[J]. Renewable and sustainable energy reviews, 2015, 42: 543-556.
[3] SHAH Z A, SINDI H F, UL-HAQ A, et al.Fuzzy logic based direct load control scheme for air conditioning load to reduce energy consumption[J]. IEEE access, 2020, 8: 117413-117427.
[4] CHAERUN NISA E, KUAN Y D.Comparative assessment to predict and forecast water-cooled chiller power consumption using machine learning and deep learning algorithms[J]. Sustainability, 2021, 13(2): 744-762.
[5] SONG C H, HAN G J, ZENG P, et al.Cloud computing based demand response management using deep reinforcement learning[J]. IEEE transactions on cloud computing, 2022, 10(1): 72-81.
[6] XU Z, GUAN X, JIA Q S, et al.Performance analysis and comparison on energy storage devices for smart building energy management[J]. IEEE transactions on smart grid, 2012, 3(4): 2136-2147.
[7] EL-BATAWY S, MORSI W G.Optimal design of community battery energy storage systems with prosumers owning electric vehicles[J]. IEEE transactions on industrial informatics, 2017, 14(5): 1920-1931.
[8] VADI S, BAYINDIR R, COLAK A M, et al.A review on communication standards and charging topologies of V2G and V2H operation strategies[J]. Energies, 2019, 12(19): 3748.
[9] CELIK B, ROCHE R, D BOUQUAIN, et al. Decentralized neighborhood energy management with coordinated smart home energy sharing[J]. IEEE transactions on smart grid, 2017, 9(6): 6387-6397.
[10] 唐捷, 黄婧杰, 徐志强, 等. 应对停电的储能备用系数及家庭能量管理系统优化控制模型[J]. 电力系统及其自动化学报, 2022, 34(6): 54-60.
TANG J, HUANG J J, XU Z Q, et al.The coefficient of energy storage for power failure and optimal control model of household energy management system[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 54-60.
[11] 李菁, 王志新, 严胜, 等. 计及舒适度的家庭能量管理系统优化控制策略[J]. 太阳能学报, 2020, 41(10): 51-58.
LI J, WANG Z X, YAN S, et al.Optimal operation of home energy management system considering user comfort preference[J]. Acta energiae solaris sinica, 2020, 41(10): 51-58.
[12] 苏慧玲, 杨世海, 陈铭明. 考虑能源效率的综合能源系统多目标优化调度[J]. 电力系统及其自动化学报, 2022, 34(2): 130-136.
SU H L, YANG S H, CHEN M M.Multi-objective optimal scheduling of integrated energy system considering energy efficiency[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 130-136.
[13] LIANG X W, HE X, HUANG T W.Distributed neuro-dynamic optimization for multi-objective power management problem in micro-grid[J]. Neurocomputing, 2019, 362(14): 51-59.
[14] 孟庆强, 李湘旗, 禹海峰, 等. 考虑源-荷不确定性的储能电站优化规划[J]. 太阳能学报, 2021, 42(10): 415-423.
MENG Q Q, LI X Q, YU H F, et al.Optimal planning of energy storage power station considering source-charge uncertainty[J]. Acta energiae solaris sinica, 2021, 42(10): 415-423.
[15] PENG H, XIONG R Y, FENG T.A cloud-fog based adaptive framework for optimal scheduling of energy hubs[J]. IEEE transactions on industrial informatics, 2022, 18(8): 5681-5688.
[16] ZHANG M M, MAO K F, LU H, et al.Multi-objective energy consumption scheduling in smart grid based on Tchebycheff decomposition[J]. IEEE transactions on smart grid, 2015, 6(6): 2869-2883.
[17] 朱永胜, 乔百豪, 瞿博阳, 等. 含风电及电动汽车的多目标电力系统调度[J]. 太阳能学报, 2019, 40(6): 1722-1730.
ZHU Y S, QIAO B H, QU B Y, et al.Multi-objective power system dispatch with wind power and electric vehicles[J]. Acta energiae solaris sinica, 2019, 40(6): 1722-1730.
[18] 赵传, 戴朝华, 周彤昕, 等. 基于Pareto折中解的风电装机规划多目标优化方法[J]. 太阳能学报, 2019, 40(6): 1763-1770.
ZHAO C, DAI Z H, ZHOU T X, et al.Multi-objective optimization of wind power planning based on pareto compromised solutions[J]. Acta energiae solaris sinica, 2019, 40(6): 1763-1770.
[19] ABDELSHAFY A M, JURASZ J, HASSAN H, et al.Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources[J]. Energy, 2020, 192: 116615.
[20] WANG D, ZHANG X, QU K, et al.Pareto tribe evolution with equilibrium-based decision for multi-objective optimization of multiple home energy management systems[J]. Energy & buildings, 2018, 159: 11-23.
[21] 赵波, 包侃侃, 徐志成, 等. 考虑需求侧响应的光储并网型微电网优化配置[J]. 中国电机工程学报, 2015, 35(21): 5465-5474.
ZHAO B, BAO K K, XU Z C, et al.Optimal sizing for grid-connected PV-and-storage microgrid considering demand response[J]. Proceedings of the CSEE, 2015, 35(21): 5465-5474.
[22] 朱瑛, 秦立宽, 颜全椿, 等. 考虑频率响应过程的风储联合调频策略及储能系统优化配置方法[J]. 电力自动化设备, 2021, 41(10): 28-35.
ZHU Y, QIN L K, YAN Q C, et al.Wind-storage combined frequency regulation strategy and optimal configuration method of energy storage system considering process of frequency response[J]. Electric power automation equipment, 2021, 41(10): 28-35.
[23] IBRAHIM H, ILINCA A, PERRON J.Energy storage systems-characteristics and comparisons[J]. Renewable and sustainable energy reviews, 2008, 12(5): 1221-1250.
[24] SHARMA D, SRINIVASAN D, MANJI P N.A modified hybrid particle swarm optimization approach for unit commitment[C]//2011 IEEE Congress of Evolutionary Computation(CEC), IEEE, New orleans, LA, 2011: 1738-1745.