基于激励力预估的直驱式波浪发电系统功率优化

黄逸, 杨俊华, 罗琦, 林汇金, 王超凡, 梁昊晖

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 556-562.

PDF(3046 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3046 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 556-562. DOI: 10.19912/j.0254-0096.tynxb.2022-0596

基于激励力预估的直驱式波浪发电系统功率优化

  • 黄逸, 杨俊华, 罗琦, 林汇金, 王超凡, 梁昊晖
作者信息 +

POWER OPTIMIZATION OF DIRECT-DRIVE WAVE POWER SYSTEM BASED ON EXCITATION FORCE ESTIMATION

  • Huang Yi, Yang Junhua, Luo Qi, Lin Huijin, Wang Chaofan, Liang Haohui
Author information +
文章历史 +

摘要

为提高不规则激励力工况下直驱式波浪发电系统的功率捕获能力,基于变分法给出最大功率提取条件,求解得到对应的理想电磁力。结合电机-水动力模型,设计滑模观测器,由Lyapunov函数证明系统稳定性,预估未知波浪不规则激励力输入。以理想电磁力为参考输入,采用空间矢量控制策略跟踪系统期望电流信号,实现最大功率输出。仿真结果表明,所提方案预估精度高,在模型失配时也有较好的鲁棒性,系统输出功率更高,可在线检测激励力,提高复杂海况下系统波能转换率。

Abstract

Aimed at improving the power capture capability of the direct-drive wave power system under irregular excitation force conditions, the maximum power extraction conditions were given based on the variational method, the corresponding perfect electromagnetic force was obtained by calculating it. In order to predict the unknown excitation force input, a sliding mode observer was designed based on the motor-hydrodynamic model, the system stability was proved by Lyapunov function. Taken the optimal electromagnetic force as the reference input, the desired current signal of the space vector control strategy tracking system is used to achieve the maximum power output. The results show that the proposed scheme has good robustness against model mismatch, higher prediction accuracy and output power of the system. It can detect the excitation force online, and promote the wave energy conversion rate of the system in complex wave conditions.

关键词

波浪能 / 预测 / 波浪能转换 / 永磁直线电机 / 最优功率控制

Key words

wave power / forecasting / wave energy conversion / permanent magnet synchronous liner machine / optimal power control

引用本文

导出引用
黄逸, 杨俊华, 罗琦, 林汇金, 王超凡, 梁昊晖. 基于激励力预估的直驱式波浪发电系统功率优化[J]. 太阳能学报. 2023, 44(8): 556-562 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0596
Huang Yi, Yang Junhua, Luo Qi, Lin Huijin, Wang Chaofan, Liang Haohui. POWER OPTIMIZATION OF DIRECT-DRIVE WAVE POWER SYSTEM BASED ON EXCITATION FORCE ESTIMATION[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 556-562 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0596
中图分类号: TM619    P743.2   

参考文献

[1] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[2] 陶爱峰, 李硕, 李慧, 等. 基于实测资料的风、浪、流综合发电特性分析[J]. 可再生能源, 2018, 36(5): 785-790.
TAO A F, LI S, LI H, et al.Investigation on the integrated power exploitation of offshore wind, wave and tidal current based on observed data analysis[J]. Renewable energy resources, 2018, 36(5): 785-790.
[3] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Developments status and application direction of wave energy generation technology[J]. Advances in new and renewable energy, 2019, 7(4): 374-378.
[4] MAREI M I, MOKHTAR M, EL-SATTAR A A. MPPT strategy based on speed control for aws-based wave energy conversion system[J]. Renewable energy, 2015, 83: 305-317.
[5] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[6] 康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29.
KANG Q, XIAO X, NIE Z X, et al.An optimal control strategy for output power of the directly driven wave power generation system[J]. Automation of electric power system, 2013, 37(3): 24-29.
[7] 黄秀秀, 杨金明, 陈渊睿, 等. 基于PCHD模型的振荡浮子式波浪发电系统的无源控制[J]. 电测与仪表, 2019, 56(7): 107-112.
HUANG X X, YANG J M, CHEN Y R, et al.Passivity based control of oscillating buoy wave power system based on PCHD model[J]. Electrical measurement & instrumentation, 2019, 56(7): 107-112.
[8] BABARIT A, CLEMENT A H.Optimal latching control of a wave energy device in regular and irregular waves[J]. Applied ocean research, 2006, 28(2): 77-91.
[9] 陈海峰, 杨俊华, 沈辉, 等. 基于混沌飞蛾捕焰算法的波浪发电系统最大功率跟踪[J]. 可再生能源, 2019, 37(11): 1697-1703.
CHEN H F, YANG J H, SHEN H, et al.Maximum power tracking of wave power generation system based on chaotic moth capture algorithm[J]. Renewable energy resources, 2019, 37(11): 1697-1703.
[10] WU F, JU P, ZHANG X P, et al.Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid[J]. Proceedings of the IEEE, 2013, 101(4): 925-941.
[11] 蔡浩然, 杨俊华, 林巧梅, 等. 傅氏分析反步法直驱型海浪发电系统功率优化控制[J]. 电测与仪表, 2018, 55(18): 57-63.
CAI H R, YANG J H, LIN Q M, et al.An optimal control strategy for output power of directly driven wave generation system based on Fourier analysis back-stepping method[J]. Electrical measurement & instrumentation, 2018, 55(18): 57-63.
[12] 陈海峰, 杨俊华, 沈辉, 等. 基于主频预估的波浪发电系统自适应滑模控制[J]. 计算机仿真, 2020, 37(3): 94-99.
CHEN H F, YANG J H, SHEN H, et al.Adaptive sliding model control of wave power generation system based on dominant frequency estimation[J]. Computer simulation, 2020, 37(3): 94-99.
[13] FUSCO F, RINGWOOD J V.A study of the prediction requirements in real-time control of wave energy converters[J]. IEEE transactions on sustainable energy, 2011, 3(1): 176-184.
[14] ZHAN S, NA J, LI G, et al.Adaptive model predictive control of wave energy converters[J]. IEEE transactions on sustainable energy, 2020, 11(1): 229-238.
[15] LI L, YUAN Z M, GAO Y, et al.Wave force prediction effect on the energy absorption of a wave energy converter with real-time control[J]. IEEE transactions on sustainable energy, 2019, 10(2): 615-624.
[16] KRACHT P, PEREZ B S, RICHARD J B, et al.Performance improvement of a point absorber wave energy converter by application of an observer-based control: results from wave tank testing[J]. IEEE transactions on industry applications, 2015, 51(4): 3426-3434.
[17] ABDELRAHMAN M, PATTON R.Observer-based unknown input estimator of wave excitation force for a wave energy converter[J]. IEEE transactions on control systems technology, 2020, 28(6): 2665-2672.
[18] NGUYEN H N, TONA P.Wave excitation force estimation for wave energy converters of the point-absorber type[J]. IEEE transactions on control systems technology, 2018, 26(6): 2173-2181.
[19] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[20] CUMMINS W E.The impulse response function and ship motions[J]. Schiffstechnik, 1962, 9: 101-109.
[21] 程正顺. 浮子式波浪能转换装置机理的频域及时域研究[D]. 上海: 上海交通大学, 2013.
CHENG Z S.Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor [D]. Shanghai: Shanghai Jiao Tong University, 2013.
[22] HUANG X R, SUN K, XIAO X.A neural network-based power control method for direct-drive wave energy converters in irregular waves[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2962-2971.
[23] YU Z, FALNES J.State-space modelling of a vertical cylinder in heave[J]. Applied ocean research, 1995, 17(5): 265-275.
[24] CHO H Y, KWEON H M, JEONG W M, et al.A study on the optimal equation of the continuous wave spectrum[J]. International journal of naval architecture and ocean engineering, 2015, 7(6): 1056-1063.

基金

国家自然科学基金(51370265); 广东省自然科学基金(2018A030313010); 广州市科技计划(202102021135)

PDF(3046 KB)

Accesses

Citation

Detail

段落导航
相关文章

/