基于势能-滑模的双馈风电机组广域阻尼控制设计方法

刘铖, 刁硕, 郝文波, 李守超

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 453-459.

PDF(2039 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2039 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 453-459. DOI: 10.19912/j.0254-0096.tynxb.2022-0600

基于势能-滑模的双馈风电机组广域阻尼控制设计方法

  • 刘铖1, 刁硕1, 郝文波2, 李守超1
作者信息 +

WIDE AREA DAMPING CONTROL DESIGN METHOD OF DFIG BASED ON POTENTIAL ENERGY-SLIDING MODE

  • Liu Cheng1, Diao Shuo1, Hao Wenbo2, Li Shouchao1
Author information +
文章历史 +

摘要

通过构建模型的方式解决双馈感应发电机并入电力系统中存在的非线性功率振荡问题,提出一种具有非线性和鲁棒性的新型功率振荡阻尼控制器,以减小此类系统中的功率振荡。首先,结合双馈感应发电机特性,构造含风电电力系统的能量函数模型。其次,根据构建的稳定流形构建滑模面,对于建模和仿真过程中存在的一些误差和外部干扰,采用扩展状态观测器进行估计。最后,基于扩展状态观测器、滑模变结构控制理论、能量函数设计双馈感应发电机的功率振荡阻尼控制器,并在四机两区系统中验证该方法的有效性。

Abstract

In order to solve the nonlinear power oscillation problem in doubly-fed induction generators when they are integrated into power systems, a power oscillation damping controller featuring nonlinearity and robustness is proposed to reduce the power oscillation . Firstly, the energy function model of the power system containing wind power is constructed by factoring in the characteristics of the doubly-fed induction generator. Secondly, the sliding mode surface is created based on the constructed stable flow form. In this phase, a few errors and external disturbances in the modeling and simulation process are estimated with the use of an extended state observer. Finally, the power oscillation damping controller of the doubly-fed induction generator is designed based on three factors: the extended state observer, the sliding-mode variable structure control theory, and the energy function. The proposed method effectiveness is verified through the four-machine two-area test system.

关键词

风电机组 / 双馈感应发电机 / 系统稳定性 / 可再生能源 / 滑模控制 / 能量函数 / 功率振荡

Key words

wind turbines / DFIG / system stability / renewable energy resources / sliding mode control / energy function / power oscillation

引用本文

导出引用
刘铖, 刁硕, 郝文波, 李守超. 基于势能-滑模的双馈风电机组广域阻尼控制设计方法[J]. 太阳能学报. 2023, 44(8): 453-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0600
Liu Cheng, Diao Shuo, Hao Wenbo, Li Shouchao. WIDE AREA DAMPING CONTROL DESIGN METHOD OF DFIG BASED ON POTENTIAL ENERGY-SLIDING MODE[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 453-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0600
中图分类号: TM712   

参考文献

[1] 徐海亮, 吴瀚, 李志, 等. 低短路比电网下含负序控制双馈风机稳定性研究的几个关键问题[J]. 电工技术学报, 2021, 36(22): 4688-4702.
XU H L, WU H, LI Z, et al.Several key issues on stability study of DFIG-based wind turbines with negative sequence control during low short-circuit ratio power grids[J]. Transactions of China Electrotechnical society, 2021, 36(22): 4688-4702.
[2] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T G, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[3] SUI X C, TANG Y F, HE H B, et al.Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming[J]. IEEE transactions on power systems, 2014, 29(5): 2539-2548.
[4] MIAO Z X, FAN L L, OSBORN D, et al.Control of DFIG-based wind generation to improve interarea oscillation damping[J]. IEEE transactions on energy conversion, 2009, 24(2): 415-422.
[5] LI H, CHEN H W, YANG C, et al.Ancillary damping control strategy for wind farms with doubly-fed induction generators using power signals in transmission lines[J]. Automation of electric power systems, 2012, 36(24): 28-33.
[6] HUGHES F M, ANAYA-LARA O, JENKINS N, et al.A power system stabilizer for DFIG-based wind generation[J]. IEEE transactions on power systems, 2006, 21(2): 763-772.
[7] 李奇, 李朔, 尹良震, 等. 基于扩张状态观测器的PEMFC发电系统串级滑模控制方法[J]. 中国电机工程学报, 2022, 42(04): 1470-1481.
LI Q, LI S, YIN L Z, et al.Cascade sliding mode control strategy of PEMFC power generation system based on extended state observer[J]. Proceedings of the CSEE, 42(04): 1470-1481.
[8] 邵文权, 王猛, 吴朝俊, 等. 基于改进滑模控制的光伏系统MPPT控制策略[J]. 太阳能学报, 2021, 42(10): 87-93.
SHAO W Q, WANG M, WU C J, et al.MPPT control strategy based on improved sliding mode control for photovoltaic power system[J]. Acta energiae solaris sinica, 2021, 42(10): 87-93.
[9] 赵凯辉, 戴旺坷, 周瑞睿, 等. 基于扩展滑模扰动观测器的永磁同步电机新型无模型滑模控制[J]. 中国电机工程学报, 2022, 42(06): 2375-2386.
ZHAO K H, DAI W K, ZHOU R R, et al.Novel model-free sliding mode control of permanent magnet synchronous motor based on extended sliding mode disturbance observer[J]. proceedings of the CSEE, 2022, 42(06): 2375-2386.
[10] SHI J, TANG Y J, XIA Y J, et al.Energy function based SMES controller for transient stability enhancement[J]. IEEE transaction on applied superconductivity, 2012, 22(3): 1-4.
[11] FANG D Z, YANG X D, SHEN W N, et al.Oscillation transient energy function applied to the design of a TCSC fuzzy logic damping controller to suppress power system interarea mode oscillations[J]. IEE proceedings - generation, transmission and distribution, 2003, 150(2): 233-238.
[12] CHOMPOOBUTRGOOL Y, VANFRETTI L.Identification of power system dominant inter-area oscillation paths[J]. IEEE transactions on power systems, 2013, 28(3): 2798-2807.
[13] FANG D Z, YANG X, CHUNG T S, et al.Adaptive fuzzy-logic SVC damping controller using strategy of oscillation energy descent[J]. IEEE transactions on power systems, 2004, 19(3): 1414-1421.
[14] FEMNDEZ R D, MANTZ R J.Linear and non-linear control of wind farms contribution to the grid stability[J]. International journal of hydrogen energy, 2010, 35(11): 6019-6024.
[15] 舒进, 郝治国, 张保会, 等. 改善接入系统同步稳定性的变速风电机组控制[J]. 电力系统自动化, 2009, 33(7): 65-69, 80.
SHU J, HAO Z G, ZHANG B H, et al.Improvement of synchronous stability in power system with integrated VSCF wind generator[J]. Automation of electric power systems, 2009, 33(7): 65-69, 80.
[16] 刘铖. 互联电网低频振荡能量解析的支路模式势能法[D]. 北京: 华北电力大学, 2017, 62-65.
LIU C.Energy decomposition analysis of low frequency oscillation for interarea power system using branch modal potential energy method[D]. Beijing: North China Electric Power University, 2017, 62-65.
[17] ZHAO M Q, YUAN X M, HU J B.Modeling of DFIG wind turbine based on internal voltage motion equation in power systems phase-amplitude dynamics analysis[J]. IEEE transactions on power systems, 2018, 33(22): 1484-1495.
[18] GEORGILAKIS P S.Technical challenges associated with the integration of wind power into power systems[J]. Renewable and sustainable energy reviews, 2008, 12(3): 852-863.
[19] KUNDUR P.Power system stability and control[M]. 北京: 中国电力出版社, 1994.
KUNDUR P.Power system stability and control[M]. Beijing: China Electric Power Press, 1994.

基金

国家自然科学基金青年基金项目(52007027); 吉林省教育厅科学研究项目(JJKH20210092KJ); 吉林市科技创新发展计划项目(20210103093)

PDF(2039 KB)

Accesses

Citation

Detail

段落导航
相关文章

/