设计一种由槽式集热器和多级闪蒸装置构成的全天候太阳能海水淡化系统,日均淡水产量为3000 m3。应用上海市的气象数据,引入多级闪蒸简化算法,采用TRNSYS软件进行动态仿真,并利用生命周期成本分析法对设计系统和常规能源淡化系统进行经济性对比。结果表明:太阳能淡化系统的年平均太阳能保证率为41.11%;在整个生命周期中,位于上海市的太阳能淡化系统单位造水成本为18.48 元/m3;当通货膨胀率低于8.5%或天然气价格高于2.09 元/m3时,太阳能淡化系统相较于同等规模的常规能源淡化系统,具有更好的经济性。
Abstract
A full-time solar desalination system composed of the trough solar collector and multi-stage flash device is proposed. The average production of distilled water of this system is 3000 m3 per day. By the simplified algorithm of multi-stage flash process, the dynamic simulation is accomplished by TRNSYS software under the climate of Shanghai. The life cycle cost analysis is adopted to compare the economy between the designed system and a desalination system driven by conventional energy. The results indicate that the average solar fraction per year is 41.11% for the solar desalination system. Throughout the life cycle, the unit desalinated water production cost of the proposed system is 18.48 yuan/m3 in Shanghai. The solar desalination system has better economic performance than the conventional energy desalination system of the same scale, when the inflation rate is under 8.5% or the gas price is beyond 2.09 yuan/m3.
关键词
太阳能 /
海水淡化 /
生命周期 /
多级闪蒸 /
动态仿真
Key words
solar energy /
desalination /
life cycle /
multi-stage flash /
dynamic simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] AHMED F E, HASHAIKEH R, HILAL N.Hybrid technologies: the future of energy efficient desalination—a review[J]. Desalination, 2020, 495: 114659.
[2] TARAZONA-ROMERO B E, CAMPOS-CELADOR A, MALDONADO-MUÑOZ Y A. Can solar desalination be small and beautiful? A critical review of existing technology under the appropriate technology paradigm[J]. Energy research & social science, 2022, 88: 102510.
[3] MALIK A, QURESHI S R, ABBAS N, et al.Energy and exergy analyses of a solar desalination plant for Karachi Pakistan[J]. Sustainable energy technologies and assessments, 2020, 37: 100596.
[4] ALIKULOV K, XUAN T D, HIGASHI O, et al.Analysis of environmental effect of hybrid solar-assisted desalination cycle in sirdarya thermal power plant, Uzbekistan[J]. Applied thermal engineering, 2017, 111: 894-902.
[5] 叶鸿烈, 郑彦捷, 赵云胜, 等. 太阳能海水淡化技术的经济性模型与影响因素分析[J]. 太阳能学报, 2019, 40(5): 1225-1231.
YE H L, ZHENG Y J, ZHAO Y S, et al.Research on economic model and influencing factors of solar desalination technology[J]. Acta energiae solaris sinica, 2019, 40(5): 1225-1231.
[6] ZHENG Y J, HATZELL K B.Technoeconomic analysis of solar thermal desalination[J]. Desalination, 2020, 474: 114168.
[7] EL D H T, ETTOUNEY H M. Fundamentals of salt water desalination[M]. New York: Elsevier, 2002: 271-381.
[8] DUFFIE J A, BECKMAN W A, BLAIR N.Solar engineering of thermal processes, photovoltaics and wind[M]. 5th edition. New Jersey: John Wiley & Sons, 2020: 462-491.
[9] ALSEHLI M, CHOI J K, ALJUHAN M.A novel design for a solar powered multistage flash desalination[J]. Solar energy, 2017, 153: 348-359.
[10] 上海市发展和改革委员会. 关于调整本市非居民天然气销售基准价格的通知[EB/OL].https://fgw.sh.gov.cn/.Shanghai Development and Reform Commission. Notice on adjusting the base price of natural gas sales to non-residents in the city[EB/OL]. https://fgw.sh.gov.cn/.
[11] SHARAF M A, NAFEY A S, GARCÍA-RODRÍGUEZ L. Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process[J]. Desalination, 2011, 272(1-3): 135-147.
[12] RAHIMI B, CHRIST A, REGENAUER L K, et al.A novel process for low grade heat driven desalination[J]. Desalination, 2014, 351: 202-212.
[13] LEBLANC J.Solar thermal desalination—a modelling and experimental study[D]. Melbourne: RMIT University, 2009.
[14] SHIRAZI A, TAYLOR R A, MORRISON G L, et al.A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications[J]. Energy conversion and management, 2017, 132: 281-306.
[15] ALI M T, FATH H E S, ARMSTRONG P R. A comprehensive techno-economical review of indirect solar desalination[J]. Renewable and sustainable energy reviews, 2011, 15(8): 4187-4199.