Hydrogen fuel cell is an energy conversion technology with high efficiency, environmental friendliness and zero carbon emission. However, the high cost of noble metal catalysts hinders its large-scale application. Benefitting from the advantages of high atomic utilization, high catalytic activity and low cost, single atom catalysts show excellent catalytic reduction performance for oxygen molecules, and have broad application prospects in hydrogen fuel cells. Therefore, how to design and synthesize single atom catalysts with high activity, high stability and low cost has become a research hotspot in this field. This paper focuses on the research progress of single atom catalysts including noble metal and non-noble metal in cathodic oxygen reduction reaction for hydrogen fuel cell, and puts forward the regulation strategies to enhance the performance of single atom catalysts, encompassing coordination structure, local environment, dual atom pairs, defective sites and exposure of active sites, which provides ideas and reference for the design of high-efficiency oxygen reduction catalysts at atomic scale. The development opportunities and challenges of single atom catalysts for oxygen reduction in hydrogen fuel cells are prospected.
Zhang Peng, Li Jiaye, Pan Yuan.
PROGRESS OF SINGLE ATOM CATALYSTS IN CATHODIC OXYGEN REDUCTION FOR REACTION HYDROGEN FUEL CELL[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 306-320 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0606
中图分类号:
TQ152
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JIAO K, XUAN J, DU Q, et al.Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. [2] MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for proton exchange membrane fuel cells: A review[J]. Renewable and sustainable energy reviews, 2018, 89: 117-134. [3] DEMIRDOVEN N, DEUTCH J.Hybrid cars now, fuel cell cars later[J]. Science, 2004, 305(5686): 974-976. [4] JACOBSON M Z, COLELLA W G, GOLDEN D M.Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730): 1901-1905. [5] NI W Y, WANG T, HÉROGUEL F, et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells[J]. Nature materials, 2022: DOI: 10.1038/s41563-022-01221-5. [6] ADABI H, SHAKOURI A, UL HASSAN N, et al.High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells[J]. Nature energy, 2021, 6(8): 834-843. [7] JUNG N, CHUNG D Y, RYU J, et al.Pt-based nanoarchitecture and catalyst design for fuel cell applications[J]. Nano today, 2014, 9(4): 433-456. [8] WANG Y J, LONG W Y, WANG L L, et al.Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals[J]. Energy & environmental science, 2018, 11(2): 258-275. [9] HOLEWINSKI A, IDROBO J C, LINIC S.High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction[J]. Nature chemistry, 2014, 6(9): 828-834. [10] TASIC G S, MILJANIC S S, MARCETA KANINSKI M P, et al. Non-noble metal catalyst for a future Pt free PEMFC[J]. Electrochemistry communications, 2009, 11(11): 2097-2100. [11] QIAO B T, WANG A Q, YANG X F, et al.Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature chemistry, 2011, 3(8): 634-641. [12] CHEN Y J, JI S F, CHEN C, et al.Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. [13] QIN J Y, LIU H, ZOU P C, et al.Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2022, 144(5): 2197-2207. [14] XIAO M L, GAO L Q, WANG Y, et al.Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806. [15] MA Z, CANO Z P, YU A P, et al.Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods[J]. Angewandte chemie international edition, 2020, 59(42): 18334-18348. [16] LIU J, JIAO M G, LU L L, et al.High performance platinum single atom electrocatalyst for oxygen reduction reaction[J]. Nature communications, 2017, 8: 1-10. [17] LIU J, JIAO M G, MEI B B, et al.Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angewandte chemie international edition, 2019, 58(4): 1163-1167. [18] GAO R J, WANG J, HUANG Z F, et al.Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading[J]. Nature energy, 2021, 6: 614-623. [19] CUI L X, FAN K C, ZONG L B, et al.Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction[J]. Energy storage materials, 2022, 44: 469-476. [20] ZHANG W B, XIAO Y.Mechanism of electrocatalytically active precious metal (Ni, Pd, Pt, and Ru) complexes in the graphene basal Plane for ORR applications in novel fuel cells[J]. Energy & fuels, 2020, 34(2): 2425-2434. [21] YANG Z, XIANG M, ZHU Y F, et al.Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction[J]. Chemical engineering journal, 2021, 426: 131347. [22] ZHANG C H, SHA J W, FEI H L, et al.Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS nano, 2017, 11(7): 6930-6941. [23] CALLE-VALLEJO F, MARTÍNEZ J I, ROSSMEISL J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions[J]. Physical chemistry chemical physics, 2011, 13(34): 15639. [24] XIAO M L, ZHU J B, LI G R, et al.A single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angewandte chemie, 2019, 131(28): 9742-9747. [25] XU H, SHANG H Y, WANG C, et al.Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis[J]. Small, 2021, 17(5): 2005092. [26] SANIJ F D, BALAKRISHNAN P, LEUNG P, et al.Advanced Pd-based nanomaterials for electro-catalytic oxygen reduction in fuel cells: A review[J]. International journal of hydrogen energy, 2021, 46(27): 14596-14627. [27] LI W, WANG D D, ZHANG Y Q, et al.Defect engineering for fuel-cell electrocatalysts[J]. Advanced materials, 2020, 32(19): 1907879. [28] XUE Q, XU G R, MAO R D, et al.Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction[J]. Journal of energy chemistry, 2017, 26(6): 1153-1159. [29] WANG C Y, CHEN D P, SANG X H, et al.Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts[J]. ACS nano, 2016, 10(6): 6345-6353. [30] SALOMÉ S, FERRARIA A M, BOTELHO DO REGO A M, et al. Enhanced activity and durability of novel activated carbon-supported PdSn heat-treated cathode catalyst for polymer electrolyte fuel cells[J]. Electrochimica acta, 2016, 192: 268-282. [31] FU Z Z, LING C Y, WANG J L.A Ti3C2O2 supported single atom, trifunctional catalyst for electrochemical reactions[J]. Journal of materials chemistry A, 2020, 8(16): 7801-7807. [32] QIN Z M, ZHAO J X.1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER[J]. Journal of colloid and interface science, 2022, 605: 155-162. [33] PENG Q, SHU P F, QI X S, et al.Solving the trifunctional activity challenge of catalysts in unitized regenerative fuel cells via 1T-MoS2 -coordinated single Pd atoms[J]. ACS omega, 2021, 6(38): 24731-24738. [34] HE F, LI K, YIN C, et al.Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective[J]. Carbon, 2017, 114: 619-627. [35] XIANG W K, ZHAO Y H, JIANG Z, et al.Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis[J]. Journal of materials chemistry A, 2018, 6(46): 23366-23377. [36] QU Q Y, JI S F, CHEN Y J, et al.Design and structural engineering of single-atomic-site catalysts for acidic oxygen reduction reaction[J]. Trends in chemistry, 2021, 3(11): 954-968. [37] ZITOLO A, GOELLNER V, ARMEL V, et al.Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature materials, 2015, 14(9): 937-942. [38] CHUNG H T, CULLEN D A, HIGGINS D, et al.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017, 357(6350): 479-484. [39] PAN Y, LIU S J, SUN K A, et al.A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angewandte chemie international edition, 2018, 57(28): 8614-8618. [40] DENG Y J, CHI B, LI J, et al.Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells[J]. Advanced energy materials, 2019, 9(13): 1802856. [41] WAN X, LIU X F, LI Y C, et al.Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature catalysis, 2019, 2(3): 259-268. [42] WALLING C.Fenton’s reagent revisited[J]. Accounts of chemical research, 1975, 8(4): 125-131. [43] WANG X X, PRABHAKARAN V, HE Y H, et al.Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach[J]. Advanced materials, 2019, 31(31): 1805126. [44] WANG X X, CULLEN D A, PAN Y T, et al.Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced materials, 2018, 30(11): 1706758. [45] CAI Z W, DU P, LIANG W H, et al.Single-atom-sized Ni-N4 sites anchored in three-dimensional hierarchical carbon nanostructures for the oxygen reduction reaction[J]. Journal of materials chemistry A, 2020, 8(30): 15012-15022. [46] ZHANG S, XUE H, LI W L, et al.Constructing precise coordination of nickel active sites on hierarchical porous carbon framework for superior oxygen reduction[J]. Small, 2021, 17(35): 2102125. [47] FERGUSON-MILLER S, BABCOCK G T.Heme/copper terminal oxidases[J]. Chemical reviews, 1996, 96(7): 2889-2908. [48] BHAGI-DAMODARAN A, MICHAEL M A, ZHU Q, et al.Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases[J]. Nature chemistry, 2017, 9(3): 257-263. [49] QU Y T, LI Z J, CHEN W X, et al.Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nature catalysis, 2018, 1(10): 781-786. [50] CUI L T, CUI L R, LI Z J, et al.A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells[J]. Journal of materials chemistry A, 2019, 7(28):16690-16695. [51] SONG P, LUO M, LIU X Z, et al.Zn single atom catalyst for highly efficient oxygen reduction reaction[J]. Advanced functional materials, 2017, 27(28): 1700802. [52] LI J, CHEN S G, YANG N, et al.Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angewandte chemie international edition, 2019, 58(21): 7035-7039. [53] WANG J, LI H G, LIU S H, et al.Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance[J]. Angewandte chemie international edition, 2021, 60(1): 181-185. [54] LI J Z, CHEN M J, CULLEN D A, et al.Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nature catalysis, 2018, 1(12): 935-945. [55] HE Y H, LIU S W, PRIEST C, et al.Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chemical society reviews, 2020, 49(11): 3484-3524. [56] ZHU C Z, SHI Q R, XU B Z, et al.Hierarchically porous M-N-C (M=Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance[J]. Advanced energy materials, 2018, 8(29): 1801956. [57] YIN P Q, YAO T, WU Y E, et al.Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte chemie international edition, 2016, 55(36): 10800-10805. [58] SHEN H J, GRACIA-ESPINO E, MA J Y, et al.Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis[J]. Nano energy, 2017, 35: 9-16. [59] SHEN H, GRACIA-ESPINO E, MA J, et al.Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media[J]. Angewandte chemie international edition, 2017, 56(44): 13800-13804. [60] HAN Y H, WANG Y G, XU R R, et al.Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal[J]. Energy & environmental science, 2018, 11(9): 2348-2352. [61] ZHANG N, ZHOU T P, CHEN M L, et al.High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst[J]. Energy & environmental science, 2020, 13(1): 111-118. [62] XU J S, LI R, XU C Q, et al.Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts[J]. Applied catalysis B: environmental, 2021, 289: 120028. [63] YUAN K, LÜTZENKIRCHEN-HECHT D, LI L B, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination[J]. Journal of the American Chemical Society, 2020, 142(5): 2404-2412. [64] ZHU Z J, YIN H J, WANG Y, et al.Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst[J]. Advanced materials, 2020, 32(42): 2004670. [65] CAI H Z, ZHANG G H, ZHANG X, et al.Engineering the local coordination environment and density of FeN4 sites by Mn cooperation for electrocatalytic oxygen reduction[J]. Small, 2022, 18(18): 2200911. [66] ZHAO X, LI X, BI Z H, et al.Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery[J]. Journal of energy chemistry, 2022, 66: 514-524. [67] DONG F, CAI Y X, LIU C, et al.Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis[J]. International journal of hydrogen energy, 2018, 43(28): 12661-12670. [68] LI Q H, CHEN W X, XIAO H, et al.Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction[J]. Advanced materials, 2018, 30(25): 1800588. [69] HUANG H C, LIN Y C, CHANG S T, et al.Effect of a sulfur and nitrogen dual-doped Fe-N-S electrocatalyst for the oxygen reduction reaction[J]. Journal of materials chemistry A, 2017, 5(37): 19790-19799. [70] SHAO C F, WU L M, ZHANG H C, et al.A versatile approach to boost oxygen reduction of Fe-N4 sites by controllably incorporating sulfur functionality[J]. Advanced functional materials, 2021, 31(25): 2100833. [71] CHEN Y J, JI S F, ZHAO S, et al.Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell[J]. Nature communications, 2018, 9: 1-12 [72] YIN H B, YUAN P F, LU B A, et al.Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium[J]. ACS catalysis, 2021, 11(20): 12754-12762. [73] ZHU X F, TAN X, WU K H, et al.Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-Band center via local coordination tuning[J]. Angewandte chemie international edition, 2021, 60(40): 21911-21917. [74] ZAGAL J H, KOPER M T M. Reaktivitätsdeskriptoren für die aktivität von molekularen MN4-Katalysatoren zur sauerstoffreduktion[J]. Angewandte chemie, 2016, 128(47): 14726-14738. [75] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The journal of physical chemistry B, 2004, 108(46): 17886-17892. [76] ZHANG J Q, ZHAO Y F, CHEN C, et al.Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. Journal of the American Chemical Society, 2019, 141(51): 20118-20126. [77] WANG J, HUANG Z Q, LIU W, et al.Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284. [78] XIAO M L, CHEN Y T, ZHU J B, et al.Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering[J]. Journal of the American Chemical Society, 2019, 141(44): 17763-17770. [79] LU Z Y, WANG B, HU Y F, et al.An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte chemie international edition, 2019, 58(9): 2622-2626. [80] ZANG J, WANG F T, CHENG Q Q, et al.Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells[J]. Journal of materials chemistry A, 2020, 8(7): 3686-3691. [81] XIAO M L, ZHANG H, CHEN Y T, et al.Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site[J]. Nano energy, 2018, 46: 396-403. [82] FEI H L, DONG J C, FENG Y X, et al.General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature catalysis, 2018, 1(1): 63-72. [83] JIA Y, ZHANG L Z, DU A J, et al.Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced materials, 2016, 28(43): 9532-9538. [84] WANG X, JIA Y, MAO X, et al.A directional synthesis for topological defect in carbon[J]. Chem, 2020, 6(8): 2009-2023. [85] LIU K X, WU G, WANG G F.Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reducion[J]. The journal of physical chemistry C, 2017, 121(21): 11319-11324. [86] JIANG R, LI L, SHENG T, et al.Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities[J]. Journal of the American Chemical Society, 2018, 140(37): 11594-11598. [87] XIAO M L, XING Z H, JIN Z, et al.Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Advanced materials, 2020, 32(49): 2004900. [88] FU X G, GAO R, JIANG G P, et al.Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC[J]. Nano energy, 2021, 83: 105734. [89] WANG G Z, YANG Z Z, DU Y G, et al.Programmable exposure of Pt active facets for efficient oxygen reduction[J]. Angewandte chemie international edition, 2019, 58(44): 15848-15854. [90] CHEN Y F, LI Z J, ZHU Y B, et al.Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Advanced materials, 2019, 31(8): 1806312. [91] YANG H, CHEN X, CHEN W T, et al.Tunable synthesis of hollow metal-nitrogen-carbon capsules for efficient oxygen reduction catalysis in proton exchange membrane fuel cells[J]. ACS nano, 2019, 13(7): 8087-8098. [92] ZHAO M Q, LIU H R, ZHANG H W, et al.A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries[J]. Energy & environmental science, 2021, 14(12): 6455-6463. [93] HAIDER R, WEN Y C, MA Z F, et al.High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies[J]. Chemical society reviews, 2021, 50(2): 1138-1187. [94] YANG X F, WANG A Q, QIAO B T, et al.Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of chemical research, 2013, 46(8): 1740-1748. [95] JI S F, CHEN Y J, WANG X L, et al.Chemical synthesis of single atomic site catalysts[J]. Chemical reviews, 2020, 120(21): 11900-11955. [96] LIU J Y, WAN X, LIU S Y, et al.Hydrogen passivation of M-N-C (M=Fe, Co) catalysts for storage stability and ORR activity improvements[J]. Advanced materials, 2021, 33(38): 2103600. [97] CHOI C H, LIM H, CHUNG M W, et al.The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium[J]. Energy & environmental science, 2018, 11(11): 3176-3182.