基于多浮体运动响应计算方法,采用OrcaFlex软件,针对光伏电站漂浮方阵模型多浮体连接件刚度与其运动响应进行数值分析研究。首先,通过与有关浮体连接件试验进行对比,验证数值模拟的合理性;然后,开展对漂浮式光伏方阵在不同刚度连接件下多浮体六自由度运动的数值计算,对横纵浮体六自由度运动进行评估;最后,分析浮体间相对运动对连接件载荷之间的影响。研究结果表明:该研究模型随连接件刚度的增加,横向浮体整体运动响应大于纵向浮体,应更关注横向浮体的连接加强问题。连接件刚度较小时,浮体间的运动约束能力较差;刚度较大时,不利于抵抗浮体间的相互冲击,造成不必要的实际工程成本。
Abstract
Based on the calculation method of multi-body floating motion response, the OrcaFlex software is used to conduct numerical analysis on the stiffness and motion response of multi-body floating connectors aiming at the floating square array model of photovoltaic power station. The rationality of numerical simulation is verified by comparing with the floating body connection test. Then, the 6-DOF motions of multiple floating bodies with different stiffness connectors and numerically calculated, and the 6-DOF motions of horizontal and vertical floating bodies are evaluated. Finally, the influence between the relative motion of floating body and the load of connecting piece is analyzed. The results show that the overall motion response of the transverse floating body is greater than that of the longitudinal floating body with the increase of the stiffness of the connector, and more attention should be paid to the connection strengthening of the transverse floating body. When the stiffness of the connecting piece is small, the motion constraint ability between floating bodies is poor. When the stiffness is large, it is not conducive to resist the impact between floating bodies, resulting in unnecessary actual engineering costs.
关键词
漂浮式光伏电站 /
漂浮方阵 /
多浮体 /
连接件刚度 /
相对运动
Key words
floating PV power station /
floating square array /
multiple floater /
connector stiffness /
relative motion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 新睿. 海上漂浮式光伏 [EB/OL]. https://news.solarbe.com/202202/14/351013. html, 2022-02-14.
XIN R. Offshore floating photovoltaic[EB/OL]. https://news.solarbe. com/202202/14/351013. html, 2022-02-14.
[2] CAGLE A E, ARMSTRONG A, EXLEY G, et al.The land sparing,water surface use efficiency, and water surface transformation of floating photovoltaic solar energy installations[J]. Sustainability, 2020, 12(19): 8154.
[3] 孔耀华. 新型浮式结构物的系泊研究[D]. 上海:上海交通大学, 2019.
KONG Y H.Mooring research of new-type floating structure[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[4] 王浤宇, 王佩明, 李艳红, 等. 水上漂浮式光伏发电系统[J]. 华电技术, 2017, 39(3): 74-76, 80.
WANG H Y, WANG P M, LI Y H, et al.Floating photovoltaic power generating system[J]. Huadian technology, 2017, 39(3): 74-76, 80.
[5] 孔耀华, 王磊, 陈作钢, 等. 漂浮式光伏电站漂浮方阵的锚泊计算研究[J]. 可再生能源, 2019, 37(10): 1434-1439.
KONG Y H, WANG L, CHEN Z G, et al.Numerical research on a mooring system of floating PV power station[J]. Renewable energy resources, 2019, 37(10): 1434-1439.
[6] 肖福勤, 陈作钢, 代燚, 等. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
XIAO F Q, CHEN Z G, DAI Y, et al.Numerical method study on environmental loads of floating photovoltaic power array[J]. Engineering mechanics, 2020, 37(3): 245-256.
[7] 肖福勤, 孔耀华, 余德海, 等. 漂浮式光伏电站漂浮方阵多点系泊特性研究[J]. 人民长江, 2020, 51(4): 168-173.
XIAO F Q, KONG Y H, YU D H, et al.Study on multi-point mooring characteristics of floating array in floating photovoltaic power station[J]. Yangtze river, 2020, 51(4): 168-173.
[8] 宋肖锋, 陈作钢, 肖福勤, 等. 漂浮式光伏电站方阵风载荷数值研究[J]. 太阳能学报, 2020, 41(10): 136-143.
SONG X F, CHEN Z G, XIAO F Q, et al.Numerical research on wind load of floating solar power plants[J]. Acta energiae solaris sinica, 2020, 41(10): 136-143.
[9] 唐湘茜, 刘爽, 甘乐, 等. 漂浮式水面光伏关键技术研发与应用[J]. 水利水电快报, 2021, 42(2): 6-7.
TANG X Q, LIU S, GAN L, et al.Research and application of floating photovoltaic power system key technology[J]. Express water resources & hydropower information, 2021, 42(2): 6-7.
[10] 张周康, 洪亮. 多浮体系统在波浪作用下运动响应的数值仿真研究[J]. 机械与电子, 2018, 36(1): 10-14.
ZHANG Z K, HONG L.Numerical simulation of multibody floating system’s motion response to waves[J]. Machinery & electronics, 2018, 36(1): 10-14.
[11] SHIH T H, LIOU W W, SHABBIR A, et al.A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & fluids, 1995, 24(3): 227-238.
[12] 王永恒, 汪学锋, 徐胜文, 等. 多模块超大型浮体中连接器刚度对其运动响应的影响[J]. 海洋工程, 2018, 36(4): 11-18.
WANG Y H, WANG X F, XU S W, et al.Influence of multi-module VLFS connector stiffness on dynamic response performance[J]. The ocean engineering, 2018, 36(4): 11-18.
[13] JTJ 213—1998, 海港水文规范[S].
JTJ 213—1998, Code of hydrology for sea harbor[S].
基金
国家自然科学基金(51809126); 江苏省自然科学基金(BK20181468); 江苏省高校自然科学基金(16KJA580003)