针对太阳能R290/CO2复叠喷射冷热双蓄系统,通过先进㶲分析方法研究系统部件间的相互作用以及优化潜力,探讨喷射器效率以及中间换热器CO2侧压力对系统㶲性能的影响规律。先进㶲分析结果发现R290喷射器的可避免内源㶲损最大,其具有最高的改进潜力,系统㶲损中88.90%为内源㶲损、41.68%为可避免㶲损。通过提高喷射器效率可有效改善整个系统的㶲效率。同时系统中存在最佳的中间换热器CO2侧压力,可使系统㶲效率达到最高,从而使得R290喷射器的可避免内源㶲损最小。
Abstract
This paper presents an investigation on the solar cascade ejector system with cold and heat storage using the refrigerant R290/CO2.The advanced exergy analysis method is utilized to analyze the interactions and optimization potential among the system components, and the effects of ejector component efficiency and CO2 side pressure of intermediate heat exchanger on system exergy performance are discussed. The R290 ejector has the largest avoidable endogenous exergy destruction and the highest potential for improvement, according to advanced exergy study results. Endogenous destruction accounts for 89.82% of the system exergy destruction, whereas the avoidable destruction accounts for 42.14%. The exergy efficiency of system can be effectively improved by increasing the ejector efficiency. There exists an optimal intermediate heat exchanger pressure to maximize exergy efficiency of system and minimize the avoidable endogenous exergy destruction of the R290 ejector.
关键词
太阳能 /
? /
复叠系统 /
先进?分析
Key words
solar energy /
exergy /
cascade system /
advanced exergy analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BRAIMAKIS K.Solar ejector cooling systems: a review[J]. Renewable energy, 2021, 164: 566-602.
[2] GIL B, KASPERSKI J.Performance analysis of a solar-powered ejector air-conditioning cycle with heavier hydrocarbons as refrigerants[J]. Energy procedia, 2014, 57: 2619-2628.
[3] BELLOS E, TZIVANIDIS C.Optimum design of a solar ejector refrigeration system for various operating scenarios[J]. Energy conversion and management, 2017, 154: 11-24.
[4] AGHAZIARATI Z, AGHDAM A H.Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle[J]. Renewable energy, 2021, 164: 1267-1283.
[5] GADO M G, MEGAHED T F, OOKAWARA S, et al.Potential application of cascade adsorption-vapor compression refrigeration system powered by photovoltaic/thermal collectors[J]. Applied thermal engineering, 2022, 207: 118075.
[6] PEREZ B P, GUTIERREZ M A, CARRILLO J E, et al.Performance of solar-driven ejector refrigeration system (SERS) as pre-cooling system for air handling units in warm climates[J]. Energy, 2022, 238: 121647.
[7] PARK W Y, SHAH N, VINE E, et al.Ensuring the climate benefits of the Montreal protocol: global governance architecture for cooling efficiency and alternative refrigerants[J]. Energy research & social science, 2021, 76: 102068.
[8] LI H, GONG X F, XU W J, et al.Effects of climate on the solar-powered R1234ze/CO2 cascade cycle for space cooling[J]. Renewable energy, 2020, 153: 870-883.
[9] 王树成, 付忠广, 张高强, 等. 基于先进㶲分析方法的燃气蒸汽联合循环㶲损分析[J]. 热力发电, 2019, 48(3): 75-79, 95.
WANG S C, FU Z G, ZHANG G Q, et al.Exergy destruction analysis of gas-steam combined cycle based on the advanced exergy analysis method[J]. Thermal power generation, 2019, 48(3): 75-79, 95.
[10] TSATSARONIS G, PARK M H.On avoidable and unavoidable exergy destructions and investment costs in thermal systems[J]. Energy conversion and management, 2002, 43(9-12): 1259-1270.
[11] BAI T, YU J L, YAN G.Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system[J]. Energy conversion and management, 2016, 126: 850-861.
[12] CHEN J Y, HAVTUN H, PALM B.Conventional and advanced exergy analysis of an ejector refrigeration system[J]. Applied energy, 2015, 144: 139-151.
[13] ZHENG L X, HU Y D, MI C N, et al.Advanced exergy analysis of a CO2 two-phase ejector[J]. Applied thermal engineering, 2022, 209: 118247.
[14] PRIDASAWAS W, LUNDQVIST P.An exergy analysis of a solar-driven ejector refrigeration system[J]. Solar energy, 2004, 76(4): 369-379.
[15] MOROSUK T, TSATSARONIS G.Advanced exergy-based methods used to understand and improve energy-conversion systems[J]. Energy, 2019, 169: 238-246.
[16] MUHAMMAD H A, LEE B, CHO J, et al.Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system[J]. Energy, 2021, 228: 120580.
[17] LEMMONN E W,HUBER M L,MCLINDEN M O.Nist standard reference database 23, reference fluid thermodynamic and transport properties (REFPROP).version 9.0[CP/DK]. National institute of standards and technology, 2010.
[18] SARKAR J.Optimization of ejector-expansion transcritical CO2 heat pump cycle[J]. Energy, 2008, 33(9): 1399-1406.
基金
国家自然科学基金(51806132); 山西省高等学校科技创新项目(201802011)