物理法制备燃料电池用催化剂

刘译阳, 周小春

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 295-305.

PDF(1852 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1852 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 295-305. DOI: 10.19912/j.0254-0096.tynxb.2022-0613

物理法制备燃料电池用催化剂

  • 刘译阳1,2, 周小春2
作者信息 +

PREPARATION OF CATALYST FOR FUEL CELL BY PHYSICAL METHOD

  • Liu Yiyang1,2, Zhou Xiaochun2
Author information +
文章历史 +

摘要

质子交换膜燃料电池的不断进步,为目前的能源需求提供了一个有潜力的解决方案。当前的研究重点是提高性能和降低整体成本的制造技术。在膜电极(MEA)组件上的催化剂沉积在过去的几十年里有许多技术已被使用,主要分为化学法和物理法两大类,其中物理法由于制备流程简单,沉积分布均匀等优点被广泛应用。该文旨在回顾许多已发表的主要技术,以展示各种各样的催化剂物理制备方法。

Abstract

Continued advances in proton exchange membrane fuel cells offer a promising solution to current energy needs. Current research is focused on fabrication techniques that improve performance and reduce overall cost. Catalyst deposition on membrane electrode(MEA) assemblies has been used by a number of techniques over the last few decades, divided into two main categories: chemical and physical methods. Of these, physical methods are widely used due to the simplicity of the preparation process and the uniformity of the deposition distribution. The aim of this paper is to review many of the main techniques that have been published in order to demonstrate the wide variety of physical methods of catalyst preparation.

关键词

质子交换膜燃料电池 / 催化剂 / 物理气相沉积 / 干粉喷涂 / 球磨法

Key words

proton exchange membrane fuel cell / catalyst / physical vapour deposition / dry powder spraying / ball milling method

引用本文

导出引用
刘译阳, 周小春. 物理法制备燃料电池用催化剂[J]. 太阳能学报. 2022, 43(6): 295-305 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0613
Liu Yiyang, Zhou Xiaochun. PREPARATION OF CATALYST FOR FUEL CELL BY PHYSICAL METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 295-305 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0613
中图分类号: D430   

参考文献

[1] SRINIVASAN S, MOSDALE R, STEVENS P, et al.Fuel cells: Reaching the era of clean and efficient power generation in the twenty-first century[J]. Annual review of energy and the environment, 1999, 24(1): 281-328.
[2] 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.
SHAO Z G, YI B L .Current status and prospects of hydrogen energy and fuel cell development[J]. Proceedings of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
[3] GASTEIGER H A, KOCHA S S, SOMPALLI B, et al.Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied catalysis B: Environmental, 2005, 56(1-2): 9-35.
[4] SUN Y Y, CUI L R, GONG J, et al.Design of a catalytic layer with hierarchical proton transport structure: The role of Nafion nanofiber[J]. ACS sustainable chemistry & engineering, 2019, 7(3): 2955-2963.
[5] 蒋尚峰, 衣宝廉. 有序化膜电极研究进展[J]. 电化学, 2016, 22(3): 213-218.
JIANG S F, YI B L.Advances in sequential membrane electrode research[J]. Electrochemistry, 2016, 22(3): 213-218.
[6] PENNER S.Assessment of research needs for advanced fuel cells[R]. DOE Advanced Fuel Cell Working Group (US), 1985.
[7] SRINIVASAN S, TICIANELLI E, DEROUIN C, et al.Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes[R]. NASA-Lewis Research Center, Space Electrochemical Research and Technology (SERT), 1987.
[8] SRINIVASAN S, MANKO D J, KOCH H, et al.Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes[J]. Journal of power sources, 1990, 29(3-4): 367-387.
[9] FERREIRA A, SRINIVASAN S.High power densities and energy efficiencies in PEMFCs using 0.05 mgPt/cm2 gas diffusion electrodes[R]. Electrochemical Society, Inc., Pennington, NJ(United States), 1994.
[10] HUANG X X, SHEN T, ZHANG T, et al.Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species[J]. Advanced energy materials, 2020, 10(11): 1900375.
[11] LIU S, LI Z D, WANG C L, et al.Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction[J]. Nature communications, 2020, 11(1): 1-11.
[12] WAN C Z, DUAN X F, HUANG Y.Molecular design of single-atom catalysts for oxygen reduction reaction[J]. Advanced energy materials, 2020, 10(14): 1903815.
[13] WANG Y, REN J W, DENG K, et al.Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media[J]. Chemistry of materials, 2000, 12(6): 1622-1627.
[14] QUINSON J, INABA M, NEUMANN S, et al.Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: Case study of the oxygen reduction reaction on Pt[J]. ACS catalysis, 2018, 8(7): 6627-6635.
[15] WANG D, XIN H L, HOVDEN R, et al.Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1): 81-87.
[16] WU D, SHEN X, ZHOU L Q, et al.A vacuum impregnation method for synthesizing octahedral Pt2 CuNi nanoparticles on mesoporous carbon support and the oxygen reduction reaction electrocatalytic properties[J]. Journal of colloid and interface science, 2020, 564: 245-253.
[17] AMINE K, MIZUHATA M, OGURO K, et al.Catalytic activity of platinum after exchange with surface active functional groups of carbon blacks[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(24): 4451-4458.
[18] SALGADO J, ANTOLINI E, GONZALEZ E.Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: The effect on the performance of the catalyst[J]. Journal of power sources, 2004, 138(1-2): 56-60.
[19] YAN Z H, WANG M, LU Y Q, et al.Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt-Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells[J]. Journal of solid state electrochemistry, 2014, 18(4): 1087-1097.
[20] 樊博, 郭玉国, 万立骏. Pt 基电催化材料[J]. 化学进展, 2010, 22(5): 852-860.
FAN B, GUO Y G, WAN L J.Pt-based electrocatalytic materials[J]. Advances in chemistry, 2010, 22(5): 852-860.
[21] 南皓雄, 党岱, 田新龙. 低铂燃料电池氧还原催化剂的制备技术研究进展[J]. 化工进展, 2018, 37(11): 4294-4302.
NAN H X, DANG D, TIAN X L.Research progress on the preparation technology of low platinum fuel cell oxygen reduction catalysts[J]. Chemical progress, 2018, 37(11): 4294-4302.
[22] REN X F, WANG Y R, LIU A M, et al.Current progress and performance improvement of Pt/C catalysts for fuel cells[J]. Journal of materials chemistry A, 2020, 8(46): 24284-24306.
[23] 黄龙, 徐海超, 荆碧. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学, 2022, 28(1): 16-32.
HUANG L, XU H C, JING B.Progress on platinum-based catalysts for proton exchange membrane fuel cells[J]. Electrochemistry, 2022, 28(1): 16-32.
[24] KAWAGUCHI T, SUGIMOTO W, MURAKAMI Y, et al.Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes[J]. Journal of catalysis, 2005, 229(1): 176-184.
[25] INOUE M, SHINGEN H, KITAMI T, et al.Preparation and physical and electrochemical properties of carbon-supported Pt-Ru (Pt-Ru/C) samples using the polygonal barrel-sputtering method[J]. Journal of physical chemistry C, 2008, 112(5): 1479-1492.
[26] BOLWIN K, GüLZOW E, BEVERS D, et al. Preparation of porous electrodes and laminated electrode-membrane structures for polymer electrolyte fuel cells (PEFC)[J]. Solid state ionics, 1995, 77: 324-330.
[27] BEVERS D, WAGNER N, VON BRADKE M.Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures[J]. International journal of hydrogen energy, 1998, 23(1): 57-63.
[28] GÜLZOW E, SCHULZE M, WAGNER N, et al. Dry layer preparation and characterisation of polymer electrolyte fuel cell components[J]. Journal of power sources, 2000, 86(1-2): 352-362.
[29] GÜLZOW E, KAZ T. New results of PEFC electrodes produced by the DLR dry preparation technique[J]. Journal of power sources, 2002, 106(1-2): 122-125.
[30] MATTOX D M.Physical vapor depositio (PVD) processes[J]. Metal finishing, 2002, 100: 394-408.
[31] BAPTISTA A, SILVA F, PORTEIRO J, et al.On the physical vapour deposition(PVD): Evolution of magnetron sputtering processes for industrial applications[J]. Procedia manufacturing, 2018, 17: 746-757.
[32] O’HAYRE R, LEE S J, CHA S W, et al. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading[J]. Journal of power sources, 2002, 109(2): 483-493.
[33] 陈晖, 周细应, 言智. 气相沉积法的薄膜制备研究[J]. 上海工程技术大学学报, 2010, 24(2): 167-172.
CHEN H, ZHOU X Y, YAN Z.Study on the preparation of thin films by vapor deposition[J]. Journal of Shanghai University of Engineering and Technology, 2010, 24(2): 167-172.
[34] 黄鸿宏, 黄洪填, 黄剑彬, 等. 真空镀膜综述[J]. 现代涂料与涂装, 2011, 14(6): 22-24.
HUANG H H, HUANG H T, HUANG J B, et al.A review of vacuum coating[J]. Modern coatings and coatings, 2011, 14(6): 22-24.
[35] 林杰, 亚振国, 丁国利, 等. 真空蒸发镀膜技术的应用[J]. 煤矿机械, 2000(2): 24-25.
LIN J, YA Z G, DING G L, et al.Application of vacuum evaporation coating technology[J]. Coal mining machinery, 2000(2): 24-25.
[36] 遇衍澄. 离子镀技术的发展和现状[J]. 薄膜科学与技术, 1995, 8(3): 240-249.
YU Y C.Development and status of ion plating technology[J]. Thin film science and technology, 1995, 8(3): 240-249.
[37] TICIANELLI E A, DEROUIN C R, SRINIVASAN S.Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1988, 251(2): 275-295.
[38] MUKERJEE S, SRINIVASAN S, APPLEBY A J.Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells[J]. Electrochimica acta, 1993, 38(12): 1661-1669.
[39] HIRANO S, KIM J, SRINIVASAN S.High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes[J]. Electrochimica acta, 1997, 42(10): 1587-1593.
[40] HAUG A T, WHITE R E, WEIDNER J W, et al.Increasing proton exchange membrane fuel cell catalyst effectiveness through sputter deposition[J]. Journal of the Electrochemical Society, 2002, 149(3): A280-A287.
[41] HAUG A T, WHITE R E, WEIDNER J W, et al.Using sputter deposition to increase CO tolerance in a proton-exchange membrane fuel cell[J]. Journal of the Electrochemical Society, 2002, 149(7): A280-A287.
[42] ANDERSON G.Atom ejection studies for sputtering of semiconductors[J]. Journal of applied physics, 1966, 37(9): 3455-3458.
[43] DAVIDSE P, MAISSEL L.Dielectric thin films through rf sputtering[J]. Journal of applied physics, 1966, 37(2): 574-579.
[44] CHA S, LEE W.Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface[J]. Journal of the Electrochemical Society, 1999, 146(11): 4055.
[45] GRUBER D, PONATH N, MüLLER J, et al. Sputter-deposited ultra-low catalyst loadings for PEM fuel cells[J]. Journal of power sources, 2005, 150: 67-72.
[46] CAILLARD A, CHARLES C, BOSWELL R, et al.Integrated plasma synthesis of efficient catalytic nanostructures for fuel cell electrodes[J]. Nanotechnology, 2007, 18(30): 305603.
[47] SWANN S.Magnetron sputtering[J]. Physics in technology, 1988, 19(2): 67.
[48] AIJAZ A, LUNDIN D, LARSSON P, et al.Dual-magnetron open field sputtering system for sideways deposition of thin films[J]. Surface and coatings technology, 2010, 204(14): 2165-2169.
[49] EHIASARIAN A, WEN J, PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J]. Journal of applied physics, 2007, 101(5): 054301.
[50] ALAMI J, PERSSON P Å, MUSIC D, et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J]. Journal of vacuum science & technology A: Vacuum, surfaces, and films, 2005, 23(2): 278-280.
[51] KELLY P J, ARNELL R D.Magnetron sputtering: A review of recent developments and applications[J]. Vacuum, 2000, 56(3): 159-172.
[52] OHRING M.Materials science of thin films[M]. Amsterdam: Elsevier, 2001.
[53] KHALAKHAN I, SUPIK L, VOROKHTA M, et al.Compositionally tuned magnetron co-sputtered PtxNi100-x alloy as a cathode catalyst for proton exchange membrane fuel cells[J]. Applied surface science, 2020, 511: 145486.
[54] OSTROVERKH A, JOHáNEK V, DUBAU M, et al. Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering[J]. International journal of hydrogen energy, 2019, 44(35): 19344-19356.
[55] LIU G, PENG L P, FAN L, et al.Investigation of high catalyteal durability for porous pt films deposited via magnetron sputtering[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2022, 37(2): 194-201.
[56] BRAULT P, JOSSERAND C, BAUCHIRE J-M, et al.Anomalous diffusion mediated by atom deposition into a porous substrate[J]. Physical review letters, 2009, 102(4): 045901.
[57] CAILLARD A, BRAULT P, MATHIAS J, et al.Deposition and diffusion of platinum nanoparticles in porous carbon assisted by plasma sputtering[J]. Surface and coatings technology, 2005, 200(1-4): 391-394.
[58] CHO Y H, YOO S J, CHO Y H, et al.Enhanced performance and improved interfacial properties of polymer electrolyte membrane fuel cells fabricated using sputter-deposited Pt thin layers[J]. Electrochimica acta, 2008, 53(21): 6111-6116.
[59] FU K K, ZENG L L, LIU J M, et al.Magnetron sputtering a high-performance catalyst for ultra-low-Pt loading PEMFCs[J]. Journal of alloys and compounds, 2020, 815: 152374.
[60] BOHLMARK J, LATTEMANN M, GUDMUNDSSON J, et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J]. Thin solid flms, 2006, 515(4): 1522-1526.
[61] ALAMI J, BOLZ S, SARAKINOS K.High power pulsed magnetron sputtering: Fundamentals and applications[J]. Journal of alloys and compounds, 2009, 483(1-2): 530-534.
[62] KOUZNETSOV V, MACAK K, SCHNEIDER J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surface and coatings technology, 1999, 122(2-3): 290-293.
[63] ANDERS A.Discharge physics of high power impulse magnetron sputtering[J]. Surface and coatings technology, 2011, 205: S1-S9.
[64] CUYNET S, CAILLARD A, LECAS T, et al.Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering[J]. Journal of physics D: Applied physics, 2014, 47(27): 272001.
[65] IVANOVA N A, ALEKSEEVA O K, FATEEV V N, et al.Activity and durability of electrocatalytic layers with low platinum loading prepared by magnetron sputtering onto gas diffusion electrodes[J]. International journal of hydrogen energy, 2019, 44(56): 29529-29536.
[66] RAMDUTT D, CHARLES C, HUDSPETH J, et al.Low energy plasma treatment of Nafion® membranes for PEM fuel cells[J]. Journal of power sources, 2007, 165(1): 41-48.
[67] NING F D, BAI C, QIN J Q, et al.Great improvement in the performance and lifetime of a fuel cell using a highly dense, well-ordered, and cone-shaped Nafion array[J]. Journal of Materials Chemistry A, 2020, 8(11): 5489-5500.
[68] KAUFMAN H, CUOMO J, HARPER J.Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology[J]. Journal of vacuum science and technology, 1982, 21(3): 725-736.
[69] FERBER H, WOLF G.Aqueous corrosion of ion implanted iron[M]. Amsterdam Elsevier. 1982: 1-11.
[70] 张云洞, 刘洪祥. 离子束溅射沉积干涉光学薄膜技术[J]. 光电工程, 2001, 28(5): 69-72.
ZHANG Y D, LIU H X.Ion beam sputtering deposition of interferometric optical films[J]. Optoelectronic engineering, 2001, 28(5): 69-72.
[71] HIRVONEN J K.Ion beam assisted deposition[C]//MRS Online Proceedings Library (OPL), 792: Symposium R-Radiation Effects and Ion Beam Processing of Materials, 2003: R12.5
[72] WOLF G K, ZUCHOLL K, FOLGER H, et al.Ion implanted catalysts for fuel cell reactions[J]. Nuclear instruments and methods in physics research, 1983, 209: 835-840.
[73] ENSINGER W, SCHRöER A, WOLF G. Are coatings produced by ion-beam-assisted deposition superior? A comparison of chemical and mechanical properties of steel coated using different deposition techniques[J]. Surface and coatings technology, 1992, 51(1-3): 217-221.
[74] GULLÁ A F, SAHA M S, ALLEN R J, et al.Toward improving the performance of PEM fuel cell by using mix metal electrodes prepared by dual IBAD[J]. Journal of the Electrochemical Society, 2005, 153(2): A366.
[75] GULLÁ A F, SAHA M S, ALLEN R J, et al.Dual ion-beam-assisted deposition as a method to obtain low loading-high performance electrodes for PEMFCs[J]. Electrochemical and solid-state letters, 2005, 8(10): A504.
[76] MUKERJEE S, SAHA M S, GULLA A, et al.Enhancing the performance of Low pt loading prepared by dual ion-beam assisted deposition in PEM fuel cells[J]. ECS transactions, 2006, 1(6): 77.
[77] SAHA M S, GULLá A F, ALLEN R J, et al.High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition[J]. Electrochimica acta, 2006, 51(22): 4680-4692.
[78] RAMASWAMY N, ARRUDA T, WEN W, et al.Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method[J]. Electrochimica acta, 2009, 54(26): 6756-6766.
[79] PARK H I, SANCHEZ D, CHO S K, et al.Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-less microbial fuel cell[J]. Environmental science & technology, 2008, 42(16): 6243-6249.
[80] PARK H I, MUSHTAQ U, PERELLO D, et al.Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation[J]. Energy & fuels, 2007, 21(5): 2984-2990.
[81] RASO M, CARRILLO I, MORA E, et al.Electrochemical study of platinum deposited by electron beam evaporation for application as fuel cell electrodes[J]. International journal of hydrogen energy, 2014, 39(10): 5301-5308.
[82] KREBS HU, WEISHEIT M, FAUPEL J, et al.Pulsed laser deposition (PLD)—A versatile thin film technique[J]. Advances in solid state physics, 2003, 43: 505-518.
[83] CUNNINGHAM N, IRISSOU E, LEFEVRE M, et al.PEMFC anode with very low Pt loadings using pulsed laser deposition[J]. Electrochemical and solid-state letters, 2003, 6(7): A125-A128.
[84] MRÓZ W, BUDNER B, TOKARZ W, et al. Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells[J]. Journal of power sources, 2015, 273: 885-893.
[85] LANG C C, LIN C H, CHEN H H, et al.Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing[J]. International journal of hydrogen energy, 2021, 46(68): 33948-33956.
[86] LIU L, CUI K.Mechanical alloying of refractory metal-silicon systems[J]. Journal of materials processing technology, 2003, 138(1-3): 394-398.
[87] BENJAMIN J S.Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical transactions, 1970, 1(10): 2943-2951.
[88] SURYANARAYANA C.Mechanical alloying and milling[J]. Progress in materials science, 2001, 46(1-2): 181-184.
[89] 张伟, 王树林. 机械合金化的研究和发展[J]. 矿山机械, 2003, 31(8): 50-53.
ZHANG W, WANG S L.Research and development of mechanical alloying[J]. Mining machinery, 2003, 31(8): 50-53.
[90] PHARKYA P, ALFANTAZI A, FARHAT Z.Fabrication using high-energy ball-milling technique and characterization of Pt-Co electrocatalysts for oxygen reduction in polymer electrolyte fuel cells[J]. Journal of electrochemical energy conversion and storage, 2005, 2(3): 171-178.
[91] DENIS M, LEFEVRE M, GUAY D, et al.Pt-Ru catalysts prepared by high energy ball-milling for PEMFC and DMFC: Influence of the synthesis conditions[J]. Electrochimica acta, 2008, 53(16): 5142-5154.

PDF(1852 KB)

Accesses

Citation

Detail

段落导航
相关文章

/