非铂燃料电池催化剂研究进展

刘宪伟, 薛俊海, 朱威, 庄仲滨

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 286-294.

PDF(1751 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1751 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 286-294. DOI: 10.19912/j.0254-0096.tynxb.2022-0622

非铂燃料电池催化剂研究进展

  • 刘宪伟1, 薛俊海2, 朱威1, 庄仲滨1
作者信息 +

PROGRESS ON PLATINUM-FREE FUEL CELL CATALYSTS

  • Liu Xianwei1, Xue Junhai2, Zhu Wei1, Zhuang Zhongbin1
Author information +
文章历史 +

摘要

燃料电池是利用氢能的理想途径,但燃料电池对于铂催化剂的依赖限制了其发展。该文综述了近年来非铂燃料电池催化剂的研究进展。对于质子交换膜燃料电池,因为阳极需铂量低,相关研究主要集中在阴极催化剂上。对于碱性膜燃料电池,一些非贵金属催化剂在阴极展现出较高的活性,但阳极侧动力学缓慢,因此非铂催化剂的研究在两极均有开展。最后,对非铂燃料电池催化剂当前的研究重点和未来的发展方向进行总结和展望,旨在为非铂燃料电池催化剂的研究和长远发展提供指导和参考。

Abstract

Fuel cells are the ideal devices to utilize hydrogen, however, the requirement of Pt hinders their development. This review focuses on the progress on the development of the platinum-free fuel cell catalysts. For proton exchange membrane fuel cells, this review mainly focuses on the cathode, due to the low Pt requirement on the anode. For hydroxide exchange membrane fuel cells, both anode and cathode require high Pt loading, thus the achievement on the both sides are reviewed. Finally, the future development of platinum-free fuel cell catalysts is prospected, aiming to provide guidance and reference for the research and long-term development.

关键词

燃料电池 / 非铂催化剂 / 氢气氧化反应 / 氧气还原反应 / 碱性膜燃料电池

Key words

fuel cells / platinum-free catalysts / hydrogen oxidation reaction / oxygen reduction reaction / hydroxide exchange membrane fuel cells

引用本文

导出引用
刘宪伟, 薛俊海, 朱威, 庄仲滨. 非铂燃料电池催化剂研究进展[J]. 太阳能学报. 2022, 43(6): 286-294 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0622
Liu Xianwei, Xue Junhai, Zhu Wei, Zhuang Zhongbin. PROGRESS ON PLATINUM-FREE FUEL CELL CATALYSTS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 286-294 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0622
中图分类号: TK513.5   

参考文献

[1] BANHAM D, YE S Y.Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective[J]. ACS energy letters, 2017, 2(3): 629-638.
[2] KOENIGSMANN C, SUTTER E, CHIESA T A, et al.Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions[J]. Nano letters, 2012, 12(4): 2013-2020.
[3] DING W, XIA M R, WEI Z D, et al.Enhanced stability and activity with Pd—O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction[J]. Chemical communications, 2014, 50(50): 6660-6663.
[4] TRITSARIS G A, NORSKOV J K, ROSSMEISL J.Trends in oxygen reduction and methanol activation on transition metal chalcogenides[J]. Electrochimica acta, 2011, 56(27): 9783-9788.
[5] NEKOOI P, AMINI M K.Effect of support type and synthesis conditions on the oxygen reduction activity of RuxSey catalyst prepared by the microwave polyol method[J]. Electrochimica acta, 2010, 55(9): 3286-3294.
[6] KULESZA P J, MIECZNIKOWSKI K, BARANOWSKA B, et al.Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: Enhancement of the electrocatalytic oxygen reduction[J]. Electrochemistry communications, 2006, 8(5): 904-908.
[7] CHUNG H T, CULLEN D A, HIGGINS D, et al.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017, 357(6350): 479-483.
[8] WANG Y C, LAI Y J, SONG L, et al.S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density[J]. Angewandte chemie-international edition, 2015, 54(34): 9907-9910.
[9] WANG J, HUANG Z Q, LIU W, et al.Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
[10] FU X G, ZAMANI P, CHOI J Y, et al.In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells[J]. Advanced materials, 2017, 29(7): 1604456.
[11] LI Y Y, ZHANG P Y, WAN L Y, et al.A general carboxylate-assisted approach to boost the ORR performance of ZIF-derived Fe/N/C catalysts for proton exchange membrane fuel cells[J]. Advanced functional materials, 2021, 31(15): 2009645.
[12] WAN X, LIU X F, LI Y C, et al.Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature catalysis, 2019, 2(3): 259-268.
[13] CHEN L, WAN X, ZHAO X N, et al.Spatial porosity design of Fe-N-C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method[J]. Journal of materials chemistry A, 2022, 10(14): 7764-7772.
[14] MIAO Z P, WANG X M, ZHAO Z L, et al.Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M—N bond length and coordination regulation[J]. Advanced materials, 2021, 33(39): 2006613.
[15] LIU J Y, WAN X, LIU S Y, et al.Hydrogen passivation of M-N-C (M=Fe, Co) catalysts for storage stability and ORR activity improvements[J]. Advanced materials, 2021, 33(38): 2103600.
[16] HE Y H, HWANG S, CULLEN D A, et al.Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy[J]. Energy & environmental science, 2019, 12(1): 250-260.
[17] WANG R X, ZHANG P Y, WANG Y C, et al.ZIF-derived Co-N-C ORR catalyst with high performance in proton exchange membrane fuel cells[J]. Progress in natural science-materials international, 2020, 30(6): 855-860.
[18] SHENG W C, GASTEIGER H A, SHAO-HORN Y.Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes[J]. Journal of the electrochemical society, 2010, 157(11): B1529-B1536.
[19] ZENG R, HANDSEL J, POYNTON S D, et al.Alkaline ionomer with tuneable water uptakes for electrochemical energy technologies[J]. Energy & environmental science, 2011, 4(12): 4925-4928.
[20] ZHENG J, NASH J, XU B J, et al.Towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions[J]. Journal of the electrochemical society, 2018, 165(2): H27-H29.
[21] LEDEZMA-YANEZ I, WALLACE W D Z, SEBASTIAN-PASCUAL P, et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes[J]. Nature energy, 2017, 2(4): 17031.
[22] CONG Y Y, MCCRUM I T, GAO X Q, et al.Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction[J]. Journal of materials chemistry A, 2019, 7(7): 3161-3169.
[23] XUE Y R, SHI L, LIU X R, et al.A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells[J]. Nature communications, 2020, 11(1): 5651.
[24] KUNDU M K, MISHRA R, BHOWMIK T, et al.Rhodium metal-rhodium oxide (Rh-Rh2O3) nanostructures with Pt-like or better activity towards hydrogen evolution and oxidation reactions (HER, HOR) in acid and base: Correlating its HOR/HER activity with hydrogen binding energy and oxophilicity of the catalyst[J]. Journal of materials chemistry A, 2018, 6(46): 23531-23541.
[25] BELLINI M, PAGLIARO M V, LENARDA A, et al.Palladium-ceria catalysts with enhanced alkaline hydrogen oxidation activity for anion exchange membrane fuel cells[J]. ACS applied energy materials, 2019, 2(7): 4999-5008.
[26] MILLER H A, LAVACCHI A, VIZZA F, et al.A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells[J]. Angewandte chemie-international edition, 2016, 55(20): 6004-6007.
[27] DAVYDOVA E S, SPECK F D, PAUL M T Y, et al. Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells[J]. ACS catalysis, 2019, 9(8): 6837-6845.
[28] QUAINO P, BELLETTI G, SHERMUKHAMEDOV S A, et al.Understanding the structure and reactivity of NiCu nanoparticles: An atomistic model[J]. Physical chemistry chemical physics, 2017, 19(39): 26812-26820.
[29] ROY A, TALARPOSHTI M R, NORMILE S J, et al.Nickel-copper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell[J]. Sustainable energy & fuels, 2018, 2(10): 2268-2275.
[30] WANG G W, LI W Z, HUANG B, et al.Exploring the composition-activity relation of Ni-Cu binary alloy electrocatalysts for hydrogen oxidation reaction in alkaline media[J]. ACS applied energy materials, 2019, 2(5):3160-3165.
[31] NI W Y, KRAMMER A, HSU C S, et al.Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium[J]. Angewandte chemie-international edition, 2019, 58(22): 7445-7449.
[32] SONG F Z, LI W, YANG J Q, et al.Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions[J]. Nature communications, 2018, 9: 4531.
[33] PARK J, JANG J H, LEE A, et al.Effect of support for non-noble NiMo electrocatalyst in alkaline hydrogen oxidation[J]. Advanced sustainable systems, 2022, 6(1): 2100226.
[34] ZHUANG Z B, GILES S A, ZHENG J, et al.Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte[J]. Nature communications, 2016, 7: 10141.
[35] YANG F L, BAO X, ZHAO Y M, et al.Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: The electronic effect induced by different heteroatom doped carbon supports[J]. Journal of materials chemistry A, 2019, 7(18): 10936-10941.
[36] OSHCHEPKOV A G, BONNEFONT A, SAVINOVA E R.On the influence of the extent of oxidation on the kinetics of the hydrogen electrode reactions on polycrystalline nickel[J]. Electrocatalysis, 2020, 11(2): 133-142.
[37] YANG Y, SUN X D, HAN G Q, et al.Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a Nickel-based metal-organic framework[J]. Angewandte chemie-international edition, 2019, 58(31): 10644-10649.
[38] YANG F L, BAO X, LI P, et al.Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures[J]. Angewandte chemie-international edition, 2019, 58(40): 14179-14183.
[39] PAN Y X, HU G H, LU J T, et al.Ni(OH)2-Ni/C for hydrogen oxidation reaction in alkaline media[J]. Journal of energy chemistry, 2019, 29: 111-115.
[40] GAO Y F, PENG H Q, WANG Y M, et al.Improving the antioxidation capability of the Ni catalyst by carbon shell coating for alkaline hydrogen oxidation reaction[J]. ACS applied materials & interfaces, 2020, 12(28): 31575-31581.
[41] KABIR S, SEROV A, ATANASSOV P.3D-graphene supports for palladium nanoparticles: Effect of micro/macropores on oxygen electroreduction in anion exchange membrane fuel cells[J]. Journal of power sources, 2018, 375: 255-264.
[42] PENG X, OMASTA T J, ROLLER J M, et al.Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Frontiers in energy, 2017, 11(3): 299-309.
[43] XIN L, ZHANG Z Y, WANG Z C, et al.Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell[J]. Frontiers in chemistry, 2013, 1: 16.
[44] WANG L Q, PENG X, MUSTAIN W E, et al.Radiation-grafted anion-exchange membranes: The switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance[J]. Energy & environmental science, 2019, 12(5): 1575-1579.
[45] WANG Y, YANG Y, JIA S F, et al.Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells[J]. Nature communications, 2019, 10, 1506.
[46] YANG Y, PENG H Q, XIONG Y, et al.High-loading composition-tolerant Co-Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells[J]. ACS energy letters, 2019, 4(6): 1251-1257.
[47] LILLOJA J, KIBENA-POLDSEPP E, SARAPUU A, et al.Transition-metal and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion-exchange membrane fuel cells[J]. ACS catalysis, 2021, 11(4): 1920-1931.
[48] HE Q, ZENG L P, WANG J, et al.Polymer-coating-induced synthesis of FeNx enriched carbon nanotubes as cathode that exceeds 1.0 W/cm2 peak power in both proton and anion exchange membrane fuel cells[J]. Journal of power sources, 2021, 489: 229499.
[49] ADABI H, SHAKOURI A, UL HASSAN N, et al.High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells[J]. Nature energy, 2021, 6(8):834-843.
[50] GONG K P, DU F, XIA Z H, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
[51] HU C G, DAI L M.Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Advanced materials, 2017, 29(9): 1604942.
[52] LU S F, PAN J, HUANG A B, et al.Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(52): 20611-20614.
[53] GAO Y F, YANG Y, SCHIMMENTI R, et al.A completely precious metal-free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(13): e2119883119.
[54] NI W Y, WANG T, HEROGUEL F, et al.An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells[J]. Nature materials, 2022, DOI:10.1038/s41563-022-01221-5.
[55] SHI L, SETZLER B P, HU K D, et al.Editors' choice-uncovering the role of alkaline pretreatment for hydroxide exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2020, 167(14): 144506.
[56] OMASTA T J, PENG X, MILLER H A, et al.Beyond 1.0 W/cm2 performance without platinum: the beginning of a new era in anion exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(15): J3039-J3044.

基金

国家重点研发计划(2019YFA0210300)

PDF(1751 KB)

Accesses

Citation

Detail

段落导航
相关文章

/