基于风险防御的退役动力电池递进式分选方法研究

颜宁, 钟瑶, 李相俊, 武中立

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 525-532.

PDF(3875 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3875 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 525-532. DOI: 10.19912/j.0254-0096.tynxb.2022-0628

基于风险防御的退役动力电池递进式分选方法研究

  • 颜宁1, 钟瑶1, 李相俊2, 武中立1
作者信息 +

RESEARCH ON PROGRESSIVE SORTING METHOD OF RETIRED POWER BATTERY BASED ON RISK DEFENSE

  • Yan Ning1, Zhong Yao1, Li Xiangjun2, Wu Zhongli1
Author information +
文章历史 +

摘要

针对退役动力电池存在初始特性参数不一致,梯次利用过程中存在安全稳定性降低等问题,提出一种基于风险防御的退役动力电池递进式分选方法。首先,提取电动汽车退役动力电池“灰箱”数据,选取剩余容量、内阻及端电压作为分选参数,采用改进K-均值算法对退役动力电池参数进行初始聚类数据提取。其次,估计梯次利用过程中退役动力电池荷电状态(SOC)、健康状态(SOH)等特性,通过功能状态(SOF)表征参数间的关联特性,并基于SOF动态一致性进行分选。最后,考虑风险防御预留系统的SOF动态安全裕度,降低退役动力电池初始特性缺陷对梯次利用重组的影响。通过仿真分析验证所提分选方法提高了退役动力电池的一致性,并有效降低了重组系统的寿命损耗。

Abstract

Aiming at the problems of inconsistent initial characteristic parameters of retired power batteries and reduced safety and stability in the process of cascade utilization, a progressive sorting method of retired power batteries based on risk defense is proposed. Firstly, the retired power batteries′"gray box" data of electric vehicles is extracted, and the remaining capacity, internal resistance and terminal voltage are selected as sorting parameters, and the improved K-means algorithm is used to extract the initial clustering data of retired power battery parameters. Secondly, the characteristics of the state of charge (SOC) and state of health (SOH) of the retired power battery during the cascade utilization process are estimated, and the relationship between the three parameters is characterized by the state of function (SOF). Finally, the SOF dynamic safety margin of the risk defense reservation system is considered to reduce the impact of the initial characteristic defects of retired power batteries on echelon utilization and reorganization. Simulation analysis shows that the proposed sorting method improves the consistency of retired power batteries and effectively reduces the life loss of the reorganization system.

关键词

退役动力电池 / 风险防御 / 递进式分选 / SOF / 安全裕度

Key words

retired power battery / risk defense / progressive sorting / SOF / safety margin

引用本文

导出引用
颜宁, 钟瑶, 李相俊, 武中立. 基于风险防御的退役动力电池递进式分选方法研究[J]. 太阳能学报. 2022, 43(5): 525-532 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0628
Yan Ning, Zhong Yao, Li Xiangjun, Wu Zhongli. RESEARCH ON PROGRESSIVE SORTING METHOD OF RETIRED POWER BATTERY BASED ON RISK DEFENSE[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 525-532 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0628
中图分类号: TM91   

参考文献

[1] 李建林, 李雅欣, 陈光, 等. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(2): 1332-1346.
LI J L, LI Y X, CHEN G, et al.Research on feature extraction and SOH evaluation methods for retired power battery[J]. Proceedings of the CSEE, 2022, 42(2): 1332-1346.
[2] 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443.
MA L, WEI C W, XIE L R, et al.Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta energiae solaris sinica, 2021, 42(10): 437-443.
[3] 孙舟, 田贺平, 王伟贤, 等. 梯次利用电池储能系统参与用户侧削峰填谷的经济性研究[J]. 太阳能学报, 2021, 42(4): 95-100.
SUN Z, TIAN H P, WANG W X, et al.Research on economy of echelon utilization battery energy storage system for user - side peak load shifting[J]. Acta energiae solaris sinica, 2021, 42(4): 95-100.
[4] 国家能源局. 新型储能项目管理规范(暂行)[EB/OL]. (2021-8-19)[2021-9-24]. http: //www. nea. gov. cn/1310021541_16243514280981n.pdf.
National Energy Administration. New energy storage project management specification(Provisional)[EB/OL].(2021-8-19)[2021-9-24]. http: //www. nea. gov. cn/1310021541_16243514280981n . pdf .
[5] JIANG T, SUN J L, WANG T R, et al.Sorting and grouping optimization method for second-use batteries considering aging mechanism[J]. Journal of energy storage, 2021, 44(A): 1-11.
[6] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022, 46(2): 429-441.
LI J L, LI Y X, LYU C, et al.Key technology of retired batteries’ screening and clustering under target of carbon neutrality[J]. Power system technology, 2022, 46(2): 429-441.
[7] 张朝龙, 赵筛筛, 章博. 基于因子分析与K-means聚类的退役动力电池快速分选方法[J]. 电力系统保护与控制, 2021, 49(12): 41-47.
ZHANG C L, ZHAO S S, ZHANG B.A fast classification method based on factor analysis and K-means clustering for retired electric vehicle batteries[J]. Power system protection and control, 2021, 49(12): 41-47.
[8] LI H L, CONG L, MA H Z, et al.Screening of retired lithium-ion batteries using incremental capacity charging curve-based residual capacity estimation method for facilitating sustainable circular lithium-ion battery system[J]. Journal of manufacturing science and engineering, 2022, 144(2): 1-13.
[9] 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1847.
WANG S, YIN Z D, ZHENG Z, et al.Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1847.
[10] LAI X, DENG C, LI J, et al.Sorting and regrouping of retired lithium-ion battery modules for echelon utilization based on partial charging curves[J]. IEEE transactions on vehicular technology, 2021, 70(2): 1246-1254.
[11] 王帅, 尹忠东, 郑重, 等. 基于电压曲线的退役电池模组分选方法[J]. 中国电机工程学报, 2020, 40(8): 2691-2704.
WANG S, YIN Z D, ZHENG Z, et al.A sorting method for retired battery modules based on voltage curves[J]. Proceedings of the CSEE, 2020, 40(8): 2691-2704.
[12] 郑岳久, 李家琦, 朱志伟, 等. 基于快速充电曲线的退役锂电池模块快速分选技术[J]. 电网技术, 2020, 44(5): 1664-1672.
ZHENG Y J, LI J Q, ZHU Z W, et al.Rapid classification based on fast charging curves for reuse of retired lithium-ion battery modules[J]. Power system technology, 2020, 44(5): 1664-1672.
[13] 吴小慧, 张兴敢. 锂电池二阶RC等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761.
WU X H, ZHANG X G.Parameters identification of second order RC equivalent circuit model for lithium batterie[J]. Journal of Nanjing University (natural science editiion), 2020, 56(5): 754-761.
[14] 邹大中, 陈浩舟, 李勋, 等. 基于云端充电数据的锂电池组一致性评价方法[J]. 电网技术, 2022, 46(3): 1049-1064.
ZOU D Z, CHEN H Z, LI X, et al.Cell-to-cell variation evaluation for lithium-ion battery packs in electric vehicles with cloud charging data[J]. Power system technology, 2022, 46(3): 1049-1064.
[15] 相益萱, 姜合, 潘品臣, 等. 二次幂耦合的K-means聚类算法研究[J]. 计算机工程与应用, 2021, 57(14): 95-102.
XIANG Y X, JIANG H, PAN P C, et al.Study on K-means clustering algorithm of quadratic power coupling[J].Computer engineering and applications, 2021, 57(14): 95-102.
[16] PARK S, AHN J, KANG T, et al.Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems[J]. Journal of power electronics, 2020, 20(1): 1526-1540.

基金

内蒙古自治区科技重大专项(2020ZD0018)

PDF(3875 KB)

Accesses

Citation

Detail

段落导航
相关文章

/