针对海上铰接式基础风力机的塔架结构,通过分析其复杂环境下的力学性能及结构间耦合作用关系,构建塔架多目标优化数学模型,采用一种基于空间参考点的非支配排序多目标遗传算法对塔架结构参数进行优化设计研究,基于所得到的Pareto解建立模糊评价指标并开展优化参数的敏感性分析,得到满足不同优化指标下的最优解方案。计算结果表明:额定风速海况下,塔架结构最大等效应力、塔顶位移及屈曲安全系数均满足安全作业许可,同时相比于NREL 5 MW原型塔架结构,塔架质量减轻了13.41%,有效减小了建造成本;等效应力也大幅减小13.79%,塔顶位移增加了3.36%,但仍远小于安全偏移量,满足设计需求;塔架屈曲安全系数为0.05远小于1,满足屈曲稳定性要求;同时塔架弯曲振动的固有频率不在叶片风轮旋转的1P和3P范围内,避免与结构发生共振,基于多目标优化所设计的塔架结构无论是结构性能还是制作成本都得到显著改善。
Abstract
For the tower structure of an offshore articulated wind turbine, a multi-objective optimization mathematical model is established by analyzing its mechanical properties and coupling relationship between structures under complex environment. Meanwhile, a non-dominated sorting multi-objective genetic algorithm based on spatial reference points is used to optimize dimensions of tower parameters. Then some fuzzy evaluation indexes are proposed and the sensitivity analysis of optimization parameters is also carried out according to Pareto solutions to obtain the optimal solution scheme. The calculation results show that the maximum equivalent stress, top displacement and buckling safety factor of the tower meet the safety operation permit under the rated wind speed sea state. And compared with the NREL 5 MW prototype tower structure, the overall mass decreases by 13.41%, the equivalent stress decreases by 13.79%. However, the maximum displacement of tower top increases by 3.36%, it is still far less than the safety offset which meets the design requirements. The buckling safety factor of the tower is 0.05, which is far less than 1 and meets the buckling stability requirements. At the same time, the natural frequency of tower bending vibration is not in the range of 1P and 3P of blade wind wheel rotation, which can avoid the occurrence of structural resonance. The tower structure design based on multi-objective optimization has been significantly improved both in structural performance and production cost.
关键词
海上风力机 /
塔架 /
多目标优化 /
遗传算法 /
敏感性分析 /
模糊评价 /
铰接式风力机
Key words
offshore wind turbines /
tower /
multi-objective optimization /
genetic algorithm /
sensitivity analysis /
fuzzy evaluation /
articulated wind turbines
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG P, LI Y, GU J Y, et al.Dynamic response of a conceptual designed articulated offshore wind turbine[J]. Journal of offshore mechanics and arctic engineering, 2021, 143(2): 024501.
[2] ZHENG Y Q, ZHANG L, PAN Y X, et al.Multi-objective structural optimization of a wind turbine tower[J]. Journal of Shanghai Jiaotong University(science), 2020, 25(4): 538-544.
[3] 和哲. 兆瓦级风力机塔架结构参数的多目标优化研究[D]. 兰州: 兰州理工大学, 2019.
HE Z.Study on multi-objective optimization structural parameters of MW wind turbine tower[D]. Lanzhou: Lanzhou University of Technology, 2019.
[4] 张璐. 风力机塔架结构分析及优化研究[D]. 兰州:兰州理工大学, 2020.
ZHANG L.Structure analysis and optimization of wind turbine tower[D]. Lanzhou: Lanzhou University of Technology, 2020.
[5] GENTILS T, WANG L, KOLIOS A.Integrated structural optimization of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied energy, 2017, 199: 187-204.
[6] YE K, JI J C.Natural frequency analysis of a spar-type offshore wind turbine tower with end mass components[J]. Journal of offshore mechanics and arctic engineering, 2018, 140(6): 064501.
[7] 陈俊岭, 何欣恒, 丛欧. 基于改进遗传算法的钢-混组合式风电机组塔架优化设计研究[J]. 太阳能学报, 2021, 42(7): 359-365.
CHEN J L, HE X H, CONG O.Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(7): 359-365.
[8] 章培, 唐友刚, 杨树耕, 等. 铰接式基础风力机数值程序开发与响应研究[J]. 振动与冲击, 2022, 41(3): 299-306.
ZHANG P, TANG Y G, YANG S G, et al.Numerical code development and dynamic response of articulated offshore wind turbine[J]. Journal of vibration and shock, 2022, 41(3): 299-306.
[9] 管彩文, 田常录. 风力机塔架模态分析方法与比较[J]. 太阳能学报, 2021, 42(4): 473-478.
GUAN C W, TIAN C L.Modal analysis method and comparison for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(4): 473-478.
[10] YANG C X, LIU Y X, WANG B. Buckling analysis on large wind turbine tower[J]. Advanced Materials Research, 2012, 512-515: 604-607.
[11] TIAN Y, XIANG X S, ZHANG X Y, et al.Sampling reference points on the pareto fronts of benchmark multi-objective optimization problems[C]//2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 2018: 1-6.
[12] TIAN Y, CHENG R, ZHANG X Y, et al.PlatEMO: a MATLAB platform for evolutionary multi-objective optimization[J]. IEEE computational intelligence magazine, 2017, 12(4): 73-87.
[13] 蔡新, 高强, 郭兴文, 等. 水平轴风力机塔架多目标优化及模糊优选[J]. 太阳能学报, 2016, 37(11): 2821-2826.
CAI X, GAO Q, GUO X W, et al.Multi-objective optimization and fuzzy evaluation of horizontal axis wind turbine tower[J]. Acta energiae solaris sinica, 2016, 37(11): 2821-2826.
[14] IEC 61400-6-2020, Wind energy generation systems-part 6: tower and foundation design requirements[S].
基金
国家自然科学基金(51879188; 52001230); 中国博士后科学基金(2021T140506); 天津市自然科学基金(21JCQNJC00330); 上海交通大学海洋工程国家重点实验室(GKZD010081)