计及相似日的LSTM光伏出力预测模型研究

王涛, 王旭, 许野, 李薇

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 316-323.

PDF(1776 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1776 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 316-323. DOI: 10.19912/j.0254-0096.tynxb.2022-0632

计及相似日的LSTM光伏出力预测模型研究

  • 王涛, 王旭, 许野, 李薇
作者信息 +

STUDY ON LSTM PHOTOVOLTAIC OUTPUT PREDICTION MODEL CONSIDERING SIMILAR DAYS

  • Wang Tao, Wang Xu, Xu Ye, Li Wei
Author information +
文章历史 +

摘要

为了提高光伏电站输出功率的预测精度,该文构建基于灰色关联度分析法(GRA)和长短期记忆神经网络(LSTM)的光伏发电组合预测模型。在运用GRA方法确定影响光伏出力的主要气象因素和选定待预测日的相似日的基础上,利用相似日的气象参数和实际发电量分别训练BP神经网络和LSTM神经网络,构建基于GRA的光伏出力智能预测模型,并在云南某光伏电站得到很好的应用。对比传统的单一预测模型和BP神经网络与GRA的组合模型,考虑相似日的LSTM预测模型的精度明显提升,可很好地满足相关要求,具有广阔的应用前景。

Abstract

To improve the prediction accuracy of PV plant's power output, a hybrid grey relational analysis (GRA) and long-short term memory(LSTM) neural network model was established in this study. Firstly, main meteorological factors affecting the photovoltaic output were identified and the similar days of the days to be predicted were determined by GRA method. Next, BP neural network model and LSTM neural network model were trained by using the meteorological parameters and actual power generation of similar days. Finally, the intelligent prediction model based on GRA method was developed, which was applied in the photovoltaic power station in Yunnan. Compared with traditional single prediction model and the combined model of BP and GRA, the accuracy of LSTM prediction model considering similar days is significantly improved, which meets the relevant requirements and owns good application prospect.

关键词

光伏发电 / 预测模型 / 长短期记忆神经网络 / 相似日 / 灰色关联度分析法

Key words

photovoltaic power / prediction model / long short-term memory neural network / similar day / grey relational analysis

引用本文

导出引用
王涛, 王旭, 许野, 李薇. 计及相似日的LSTM光伏出力预测模型研究[J]. 太阳能学报. 2023, 44(8): 316-323 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0632
Wang Tao, Wang Xu, Xu Ye, Li Wei. STUDY ON LSTM PHOTOVOLTAIC OUTPUT PREDICTION MODEL CONSIDERING SIMILAR DAYS[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 316-323 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0632
中图分类号: TM615   

参考文献

[1] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[2] 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39(8): 2221-2230, 5.
ZHANG Q, MA Y, LI G L, et al.Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 2019, 39(8): 2221-2230, 5.
[3] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[4] TASCIKARAOGLU A, UZUNOGLU M.A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and sustainable energy reviews, 2014, 34: 243-254.
[5] SHARMA N, MANGLA M, YADAV S, et al.A sequential ensemble model for photovoltaic power forecasting[J]. Computers & electrical engineering, 2021, 96: 107484.
[6] LUO X, ZHANG D X, ZHU X.Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. Energy, 2021, 225: 120240.
[7] 卢静, 翟海清, 冯双磊, 等. 光伏发电功率预测方法的探索[J]. 华东电力, 2013, 41(2): 380-384.
LU J, ZHAI H Q, FENG S L, et al.Physical method for photovoltaic power prediction[J]. East China electric power, 2013, 41(2): 380-384.
[8] 管霖, 赵琦, 周保荣, 等. 基于多尺度聚类分析的光伏功率特性建模及预测应用[J]. 电力系统自动化, 2018, 42(15): 24-30.
GUAN L, ZHAO Q, ZHOU B R, et al.Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J]. Automation of electric power systems, 2018, 42(15): 24-30.
[9] BAI X Y, LIANG L, ZHU X Q.Improved Markov-chain-based ultra-short-term PV forecasting method for enhancing power system resilience[J]. The journal of engineering, 2021, 2021(2): 114-124.
[10] SHI J, LIU Y Q, YANG Y P, et al.Short-term wind power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis[C]//2011 IEEE Industrial and Commercial Power Systems Technical Conference, Newport Beach, CA, USA, 2011: 1-7.
[11] ROSATO A, PANELLA M, ARANEO R.A distributed algorithm for the cooperative prediction of power production in PV plants[J]. IEEE transactions on energy conversion, 2019, 34(1): 497-508.
[12] 姜侨娜, 陈中. BP-马尔科夫组合预测方法在光伏发电量预测中的应用[J]. 电力需求侧管理, 2011, 13(6): 21-24.
JIANG Q N, CHEN Z.The study of solar power forecasting based on BP-Markov method[J]. Power demand side management, 2011, 13(6): 21-24.
[13] JU Y, SUN G Y, CHEN Q H, et al.A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting[J]. IEEE access, 2019, 7: 28309-28318.
[14] YONA A, SENJYU T, SABER A Y, et al.Application of neural network to 24-hour-ahead generating power forecasting for PV system[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-6.
[15] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[16] 闫钇汛, 王丽婕, 郭洪武, 等. 基于多特征分析和提取的短期光伏功率预测[J]. 高电压技术, 2022, 48(9): 3734-3743.
YAN Y X, WANG L J, GUO H W, et al.Short-term photovoltaic power prediction based on multi-feature analysis and extraction[J]. High voltage engineering, 2022, 48(9): 3734-3743.
[17] 程泽, 韩丽洁, 李思宇, 等. 光伏发电功率的智能预测算法[J]. 电力建设, 2014, 35(7): 34-39.
CHENG Z, HAN L J, LI S Y, et al.Intelligent forecasting algorithm for photovoltaic power generation[J]. Electric power construction, 2014, 35(7): 34-39.
[18] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50-57.
JI X G, LI H, LIU S J, et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power system protection and control, 2020, 48(7): 50-57.
[19] LAN H, YIN H, HONG Y Y, et al.Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route[J]. Applied energy, 2018, 211: 15-27.
[20] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[21] QU J Q, QIAN Z, PEI Y.Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy, 2021, 232: 120996.
[22] 陈新元. 基于灰色关联度与灵敏度的配电网差异化降损策略研究[D]. 长春: 吉林大学, 2020.
CHEN X Y.Research on the strategy of power distribution network differential loss reduction based on grey correlation degree and sensitivity[D]. Changchun: Jilin University, 2020.
[23] 赵元芳. 分布式光伏电站发电效率影响因素研究[J]. 中国战略新兴产业, 2018(24): 192-193.
ZHAO Y F.Research on influencing factors of power generation efficiency of distributed photovoltaic power stations[J]. China strategic emerging industry, 2018(24): 192-193.
[24] 宋绍剑, 李博涵. 基于LSTM网络的光伏发电功率短期预测方法的研究[J]. 可再生能源, 2021, 39(5): 594-602.
SONG S J, LI B H.Short-term forecasting method of photovoltaic power based on LSTM[J]. Renewable energy resources, 2021, 39(5): 594-602.
[25] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on Kmeans and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.

基金

国家重点研发计划(2018YFE0208400)

PDF(1776 KB)

Accesses

Citation

Detail

段落导航
相关文章

/