海上风电机组多导管架拓扑优化方法

张承婉, 张锦华, 龙凯, 陆飞宇, 陶涛

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 495-500.

PDF(2942 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2942 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 495-500. DOI: 10.19912/j.0254-0096.tynxb.2022-0634

海上风电机组多导管架拓扑优化方法

  • 张承婉1, 张锦华1,2, 龙凯1, 陆飞宇1, 陶涛1,3
作者信息 +

TOPOLOGY OPTIMIZATION METHODOLOGY ON MULTI-JACKET STRUCTURE FOR OFFSHORE WIND TURBINE

  • Zhang Chengwan1, Zhang Jinhua1,2, Long Kai1, Lu Feiyu1, Tao Tao1,3
Author information +
文章历史 +

摘要

为实现海上风电机组多导管架结构概念设计,对某型5 MW多导管架结构进行模态分析、整机载荷计算与极限工况下的刚强度分析。根据受力特点,建立多导管架结构的多目标拓扑优化模型,通过最小尺寸约束抑制棋盘格现象并设置对称面约束,得到不同权因子下的拓扑优化结果。基于某一加权因子下拓扑优化结果,重新建立新型多导管架有限元模型,并进行载荷重分析。通过极限工况下的静动态分析结果对比可知,优化结构一阶固有频率略有提高,最大变形和应力均大幅降低。上述结果证明了提出的拓扑优化流程在海上风电机组多导管架设计中的可行性和优越性。

Abstract

To realize the conceptual design of multi-jacket structure for offshore wind turbine (OWT), modal analysis, load calculation, stiffness and strength study of in extreme working conditions were conducted for a 5 MW multi-jacket structure were conducted.. Based on its mechanical behavior, a multi-objective topology optimization (TO) formulationmodel for multi-jacket structure was proposed, by suppressing checkerboard patterns by imposing a minimum size restriction and adopting plane symmetry constraints. Thus the TO results by varying weighted with different weight factors were obtained. In terms of topological configuration under a specified weighted factor, the finite element model of a novel multi-jacket structure was providedre-established and load calculation was reanalyzed. By comparing the static and dynamic analysis results under ultimate loading cases, it can be observed that the first-order natural frequency of the optimized structure is slightly enhanced. Simultaneously, the maximum deformation and stress wereare greatly reduced. These results clearly confirmedconfirm the viability and superiority of the suggested TO procedure in the multi-jacket design of OWTs.

关键词

海上风电机组 / 结构优化 / 多目标优化 / 最大位移

Key words

offshore wind turbines / structural optimization / multi-objective optimization / maximum deformation

引用本文

导出引用
张承婉, 张锦华, 龙凯, 陆飞宇, 陶涛. 海上风电机组多导管架拓扑优化方法[J]. 太阳能学报. 2023, 44(6): 495-500 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0634
Zhang Chengwan, Zhang Jinhua, Long Kai, Lu Feiyu, Tao Tao. TOPOLOGY OPTIMIZATION METHODOLOGY ON MULTI-JACKET STRUCTURE FOR OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 495-500 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0634
中图分类号: TH12   

参考文献

[1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988, 71(2): 197-224.
[2] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural and multidisciplinary optimization, 1989, 1(4): 193-202.
[3] ZHOU M, ROZVANY G.The COC algorithm, part II: topological, geometry and generalized shape optimization[J]. Computer methods in applied mechanics and engineering, 1991, 89(1-3): 309-336.
[4] XIE Y M, STEVEN G P.A simple evolutionary procedure for structural optimization[J]. Computer & structure, 1993, 49(5): 885-896.
[5] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M].北京: 科学出版社, 2013.
SUI Y K, YE H L.Continuum topology optimization methods ICM[M]. Beijing: Science Press, 2013.
[6] WANG M Y, WANG X M, GUO D M.A level set method for structural topology optimization[J]. Computer methods in applied mechanics and engineering, 2003, 192(1-2): 227-246.
[7] ALLAIRE G, JOUVE F, TOADER A M.A level-set method for shape optimization[J]. Comptes rendus mathematique, 2002, 334(12): 1125-1130.
[8] GUO X, ZHANG W S, ZHONG W L.Doing topology optimization explicitly and geometrically: a new moving morphable components based framework[J]. Journal of applied mechanics, 2014, 81(8): 081009.
[9] ZHU J H, ZHANG W H, XIA L.Topology optimization in aircraft and aerospace structures design[J]. Archives of computational methods in engineering, 2015, 23: 595-622.
[10] AGE N, ANDREASSEN E, LAZAROV B S, et al.Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550: 84-86.
[11] MENG L, ZHANG W H, DUAN D L, et al.From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap[J]. Archives of computational methods in engineering, 2020, 27: 805-830.
[12] LIU J K, GAYNOR A T, CHEN S K.Current and future trends in topology optimization for additive manufacturing[J]. Structural and multidisciplinary optimization, 2018, 57: 2457-2483.
[13] BAI J T, ZHAO Y F, MENG G W, et al.Bridging topological results and thin-walled frame structures considering manufacturability[J]. Journal of mechanical design, 2021, 143(9): 091706.
[14] GENTILS T, LIN W, KOLIOS A.Integrated structural optimization of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied energy, 2017, 199: 187-204.
[15] MOTLAGH A A, SHABAKHTV N, KAVEH A.Design optimization of jacket offshore platform considering fatigue damage using Genetic Algorithm[J]. Ocean engineering, 2021, 227: 108869.
[16] ZHANG P Y, LI J Y, GAN Y, et al.Bearing capacity and load transfer of brace topological in offshore wind turbine jacket structure[J]. Ocean engineering, 2020, 199: 107037.
[17] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Ocean engineering, 2019, 84: 38-50.
[18] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2021, 243: 110084.
[19] LEE Y S, GONZALEZ J A, LEE J H, et al.Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[20] 林毅峰. 海上风电机组支撑结构与地基基础一体化分析设计[M]. 北京: 机械工业出版社, 2020.
LIN Y F.Integrated analysis and design for support structure and foundation of offshore wind turbine[M]. Beijing: China Machine Press, 2020.
[21] IEC 61400-3, Wind turbines-part3: design requirements for offshore wind turbines[S].
[22] ZHOU M, SHYY Y K, THOMS H L.Checkerboard and minimum member size control in topology optimization[J]. Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[23] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23: 97-110.

基金

国家重点研发计划项目“10 兆瓦级深远海漂浮式风电机组关键技术与装备”(2022YFB4201300); 广东省基础与应用基础研究基金海上风电联合基金(2022A1515240057); 华能集团海上风电与智慧能源系统科技专项(HNKJ20-H88-01)

PDF(2942 KB)

Accesses

Citation

Detail

段落导航
相关文章

/