RESEARCH ON DYNAMIC CHARACTERISTICS OF PLANETARY GEAR-ROLLING BEARING COUPLING SYSTEM OF WIND TURBINES
Xu Huachao1~3, Bai Houyi3, Qin Datong2, Wang Yong1,2, Liu Changzhao2
Author information+
1. School of Intelligent Manufacturing and Automotive, Chongqing College of Electronic Engineering, Chongqing 401331, China; 2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China; 3. Chongqing Chang'an Wangjiang Industry Group Co., Ltd., Chongqing 404135, China
In order to meet the integrated design requirements of planetary gear and rolling bearing, a dynamic modeling method of planetary gear-rolling bearing coupling system based on multi-body dynamics theory and elastic contact theory is proposed. The model not only considers the dynamic interaction between planetary gear and rolling bearing, but also calculates the contact loads of each rolling body. Taking the planetary gear-rolling bearing system of wind turbine as the research object, the dynamic model of its coupling system is constructed and the coupling mechanism between planetary gear and rolling bearing is studied. The results show that the planetary gear has a significant influence on the dynamic response of rolling bearings. Affected by gear meshing force, the rolling element contact load and the bearing eccentric trajectory show the high-frequency fluctuation characteristics. The influence of planetary gears on the dynamic response of rolling bearings should be fully evaluated in the design.
Xu Huachao, Bai Houyi, Qin Datong, Wang Yong, Liu Changzhao.
RESEARCH ON DYNAMIC CHARACTERISTICS OF PLANETARY GEAR-ROLLING BEARING COUPLING SYSTEM OF WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 477-484 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0638
中图分类号:
TH132
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙占飞, 周建星, 章翔峰, 等. 计入齿形误差的风电机组行星齿轮传动系统动态特性研究[J]. 太阳能学报, 2022, 43(3): 315-322. SUN Z F, ZHOU J X, ZHANG X F, et al.Study on dynamic characteristics of wind turbine planetary gear transmission system considering tooth shape error[J]. Acta energiae solaris sinica, 2022, 43(3): 315-322. [2] 刘长钊, 吕雪慧, 秦大同, 等. 开关磁阻风电制氢动力传动系统机电耦合动力学分析[J]. 太阳能学报, 2022, 43(3): 42-52. LIU C Z, LYU X H, QIN D T, et al.Electromechanical coupling dynamics analysis of hydrogen-production power transmission system of switched reluctance wind power[J]. Acta energiae solaris sinica, 2022, 43(3): 42-52. [3] RIBRANT J.Reliability performance and maintenance-A survey of failures in wind power systems[D]. Sweden: Royal Institute, 2006. [4] GUO Y C, PARKER R G.Purely rotational model and vibration modes of compound planetary gears[J]. Mechanism and machine theory, 2010, 45(3): 365-377. [5] 陈会涛, 吴晓铃, 秦大同, 等. 随机风载下风力机行星齿轮系统随机振动分析[J].太阳能学报, 2013, 34(10): 1702-1707. CHEN H T, WU X L, QIN D T, et al.Random vibration analysis of planetary gear system of wind turbine with random wind loads[J]. Acta energiae solaris sinica, 2013, 34(10): 1702-1707. [6] 王均刚, 王勇, 霍志璞. 风电增速箱行星传动系统动力学方程及均载特性[J]. 太阳能学报, 2015, 36(1): 26-32. WANG J G, WANG Y, HUO Z P.Load sharing behavior and dynamic equations for planetary gear train transmission of wind turbine gearboxes[J]. Acta energiae solaris sinica, 2015, 36(1): 26-32. [7] XUN C, LONG X H, HUA H X.Effects of random tooth profile errors on the dynamic behaviors of planetary gears[J]. Journal of sound and vibration, 2018, 415: 91-110. [8] WANG F, ZHANG J, XU X, et al.New teeth surface and back (TSB) modification method for transient torsional vibration suppression of planetary gear powertrain for an electric vehicle[J]. Mechanism and machine theory, 2019, 140: 520-537. [9] 秦大同, 鲁迪, 陈锐博, 等. 随机风速下风电传动系统机电耦合动态特性分析[J]. 太阳能学报, 2020, 41(11): 326-333. QIN D T, LU D, CHEN R B, et al.Electromechanical coupling dynamic characteristic analysis of wind turbine transmission system under random wind speed[J]. Acta energiae solaris sinica, 2020, 41(11): 326-333. [10] LIN J A, PARKER R G.Analytical characterization of the unique properties of planetary gear free vibration[J]. Journal of vibration and acoustics, 1999, 121(3): 316-321. [11] 许华超, 孙文磊, 周建星, 等. 风电机组行星传动系统固有特性灵敏度研究[J]. 太阳能学报, 2016, 37(1): 201-207. XU H C, SUN W L, ZHOU J X, et al.Sensitivity of planetary gear natural characteristics used in wind turbine[J]. Acta energiae solaris sinica, 2016, 37(1): 201-207. [12] HONG I J, KAHRAMAN A, ANDERSON N.A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions[J]. International journal of fatigue, 2020, 133(4): 105432. [13] SHEN Z X, QIAO B J, YANG L H, et al.Evaluating the influence of tooth surface wear on TVMS of planetary gear set[J]. Mechanism and machine theory, 2019, 136: 206-223. [14] SAINSOT P, VELEX P.On contact deflection and stiffness in spur and helical gears[J]. Mechanism and machine theory, 2020, 154(4): 104049. [15] 赵宇豪, 魏静, 张世界, 等. 结构柔性对大型风电机组齿轮传动系统动态响应的影响分析[J]. 太阳能学报, 2021, 42(12): 174-182. ZHAO Y H, WEI J, ZHANG S J, et al.Study of effect of structural flexibility on dynamic characteristics of large-scale wind turbine gear transmission system[J]. Acta energiae solaris sinica, 2021, 42(12): 174-182. [16] 刘向阳, 周建星, 章翔峰, 等. 考虑齿圈柔性的风电机组行星传动均载特性与灵敏度分析[J]. 太阳能学报, 2021, 42(7): 340-349. LIU X Y, ZHOU J X, ZHANG X F, et al.Analysis of load sharing characteristics and sensitivity of planetary transmission of wind turbine considering flexibility of gear ring[J]. Acta energiae solaris sinica, 2021, 42(7): 340-349. [17] IGLESIAS M, FERNANDEZ D R, De-Juan A, et al.Advanced model for the calculation of meshing forces in spur gear planetary transmissions[J]. Meccanica, 2015, 50(7): 1869-1894. [18] FLORES P, MACHADO M, SEABRA E A R, et al. A parametric study on the baumgarte stabilization method for forward dynamics of constrained multibody systems[J]. Journal of computational and nonlinear dynamics, 2011, 6(1): 011019. [19] XU L X, LI Y G.Modeling of a deep-groove ball bearing with waviness defects in planar multibody system[J]. Multibody system dynamics, 2015, 33(3): 229-258. [20] XU L X.A method for modelling contact between circular and non-circular shapes with variable radii of curvature and its application in planar mechanical systems[J]. Multibody system dynamics, 2017, 39(3): 153-174.