氢燃料电池汽车全球技术法规第二阶段火烧试验方法研究

李逸凡, 李奇楠, 杨苗苗, 郑津洋, 花争立

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 277-285.

PDF(1833 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1833 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 277-285. DOI: 10.19912/j.0254-0096.tynxb.2022-0642

氢燃料电池汽车全球技术法规第二阶段火烧试验方法研究

  • 李逸凡, 李奇楠, 杨苗苗, 郑津洋, 花争立
作者信息 +

RESEARCH ON FIRE TEST METHOD OF UN GTR 13 PHASE 2

  • Li Yifan, Li Qi’nan, Yang Miaomiao, Zheng Jinyang, Hua Zhengli
Author information +
文章历史 +

摘要

近期,氢燃料电池汽车全球技术法规(UN GTR 13)第二阶段为提高火烧试验可重复性提出的新方法,将对中国氢燃料电池汽车的发展产生重大影响。该文在分析火烧试验结果可重复性问题的基础上,系统研究火烧试验新方法的主要内容、特点及其提出的技术理由,指出中国标准制定、试验设施和技术研究面临的挑战,并提出若干建议。

Abstract

As one of the important carriers of global energy revolution and low-carbon development, hydrogen is an important component of China's future national energy system. Recently, a new method to improve the reproducibility of fire test is proposed in the Global Technical Regulation No.13 for hydrogen and fuel-cell vehicles (UN GTR 13) phase 2, which will have a significant impact on the development of hydrogen fuel cell vehicles in China. This paper analyses the problem on reproducibility of fire test, systematically studies the main contents, characteristics and technical reasons of the new method for fire test, points out the challenges of standard setting, test facilities and technical research, and proposes some suggestions.

关键词

氢能 / 储氢 / 气瓶 / 火烧试验 / 法规

Key words

hydrogen / hydrogen storage / gas cylinders / fire testing / regulations

引用本文

导出引用
李逸凡, 李奇楠, 杨苗苗, 郑津洋, 花争立. 氢燃料电池汽车全球技术法规第二阶段火烧试验方法研究[J]. 太阳能学报. 2022, 43(6): 277-285 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0642
Li Yifan, Li Qi’nan, Yang Miaomiao, Zheng Jinyang, Hua Zhengli. RESEARCH ON FIRE TEST METHOD OF UN GTR 13 PHASE 2[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 277-285 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0642
中图分类号: TK91   

参考文献

[1] 刘玮, 万燕鸣, 熊亚林, 等. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642.
LIU W, WAN Y M, XIONG Y L, et al.Outlook of low carbon and clean hydrogen in China under the goal of“carbon peak and neutrality”[J]. Energy storage science and technology, 2022, 11(2): 635-642.
[2] 张轩, 樊昕晔. 氢能可持续发展模式探讨[J]. 现代化工, 2021, 41(10): 1-6.
ZHANG X, FAN X Y.Discussion on sustainable development model of hydrogen energy[J]. Modern chemical industry, 2021, 141(10): 1-6.
[3] 符冠云, 熊华文. 日本、德国、美国氢能发展模式及其启示[J]. 宏观经济管理, 2020(6): 84-90.
FU G Y, XIONG H W.The models of hydrogen energy development in Japan, Germany and the United States and enlightenments[J]. Macroeconomic management, 2020(6): 84-90.
[4] SCHEFFLER G W, MCCLORY M, VEENSTRA M, et al.Establishing localized fire test methods and progressing safety standards for FCVs and hydrogen vehicles[C]//SAE 2011 World Congress & Exhibition, Detroit, USA, 2011.
[5] 郑津洋, 欧可升, 花争立, 等. 车用高压储氢气瓶局部火烧试验方法研究[J]. 太阳能学报, 2014, 35(1): 58-63.
ZHENG J Y, OU K S, HUA Z L, et al.Investigation on localized fire test method for on-board high-pressure hydrogen storage tanks[J]. Acta energiae solaris sinica, 2014, 35(1): 58-63.
[6] TAMURA Y, TAKABAYASHI M, OHTSUKA N, et al.Development of a burner for localized fire tests in hydrogen fuel tank and an evaluation of those fire tests[J]. Transactions of Society of Automotive Engineers of Japan, 2012, 43(2): 521-526.
[7] 刘岩, 郑津洋, 胡军. 车载高压氢瓶火烧试验及不同充装介质数值比较研究[J]. 高校化学工程学报, 2012, 26(3): 412-417.
LIU Y, ZHENG J Y,HU J.Bonfire test and different filling mediums’ numerical comparison research of high-pressure hydrogen storage cylinders for vehicle[J]. Journal of chemical engineering of Chinese universities,2012, 26(3): 412-417.
[8] ZHENG J Y, BIE H Y, XU P, et al.Experimental and numerical studies on the bonfire test of high-pressure hydrogen storage vessels[J]. International journal of hydrogen energy, 2010, 35(15): 8191-8198.
[9] ZHENG J Y, OU K S, BIE H Y, et al.Heat transfer analysis of high-pressure hydrogen storage tanks subjected to localized fire[J]. International journal of hydrogen energy, 2012, 37(17): 13125-13131.
[10] TAMURA Y, SUZUKI J, WATANABE S.Survey of the bonfire testing method using high-pressure hydrogen gas cylinders: Part 2-Effect of flame scales and fuels for fire source[J]. JARI research journal, 2005, 7(27): 331-334.
[11] TAMURA Y, SUZUKI J, WATANABE S.Bonfire test of automotive hydrogen gas cylinders with high reliability and accuracy[J]. Transactions of the Society of Automotive Engineers of Japan, 2006, 37: 49-54.
[12] TAMURA Y, SUZUKI J, WATANABE S.CFD analysis of fire testing of automotive hydrogen gas cylinders with substitutive gases[R]. SAE Technical Papers, 2005.
[13] ZALOSH R, WEYANDT N.Hydrogen fuel tank fire exposure burst test[R]. SAE Paper, 2005.
[14] KASHKAROV S, MAKAROV D, MOLKOV V.Effect of a heat release rate on reproducibility of fire test for hydrogen storage cylinders[J]. International journal of hydrogen energy, 2018, 43(21): 10185-10192.
[15] HALM D, FOUILLEN F, LAINÉ E, et al.Composite pressure vessels for hydrogen storage in fire conditions: Fire tests and burst simulation[J]. International journal of hydrogen energy, 2017, 42(31): 20056-20070.
[16] RUBAN S, HEUDIER L, JAMOIS D, et al.Fire risk on high-pressure full composite cylinders for automotive applications[J]. International journal of hydrogen energy, 2012, 37(22): 17630-17638.
[17] BLANC-VANNET P, JALLAIS S, FUSTER B, et al.Fire tests carried out in FCH JU Firecomp project, recommendations and application to safety of gas storage systems[J]. International journal of hydrogen energy, 2019,44(17): 9100-9109.
[18] HUPP N, STAHL U, KUNZE K, et al.Influence of fire intensity, fire impingement area and internal pressure on the fire resistance of composite pressure vessels for the storage of hydrogen in automobile applications[J]. Fire safety journal, 2018, 104(3): 1-7.
[19] 欧可升. 碳纤维全缠绕复合材料高压储氢气瓶耐局部火烧性能研究[D]. 杭州:浙江大学, 2014.
OU K S.Research on fully-wrapped carbon fiber reinforced composite high-pressure hydrogen storage cylinder subjected to localized fire[D]. Hangzhou: Zhejiang University, 2014.
[20] YOHSUKE T, MASARU T, MASAYUKI T, et al.Development and characteristics of a burner for localized fire tests and an evaluation of those fire tests[J]. SAE international journal of passenger cars-mechanical systems, 2012, 5(2): 992-1001.
[21] CSA/ANSINGV 2:19, Compressed natural gas vehicle fuel containers[S]. 2019.
[22] SAE J2601, Fueling protocols for light duty gaseous hydrogen surface vehicles[S]. 2020.
[23] GALASSI M C, BARDLDI D, IBORRA B A, et al.CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks[J]. International journal of hydrogen energy, 2012, 37(8): 6886-6892.
[24] SHEN C C, MA L, HUANG G, et al.Consequence assessment of high-pressure hydrogen storage tank rupture during fire test[J]. Journal of loss prevention in the process industries, 2018,55: 223-231.
[25] GB/T 35544, 车用压缩氢气铝内胆碳纤维全缠绕气瓶[S].
GB/T 35544, Fully-wrapped carbon fiber reinforced cylinders with a aluminum liner for the on-board storage of compressed hydrogen as a fuel for land vehicles[S].
[26] T/CATSI 02007, 车用压缩氢气塑料内胆碳纤维全缠绕气瓶[S].
T/CATSI 02007, Fully-wrapped carbon fiber reinforced cylinder with a plastic liner for on-board storage of compressed hydrogen for land vehicles[S].
[27] ISO/TR 13086-2:2017, Gas cylinders — Guidance for design of composite cylinders—Part 2: Bonfire test issues[S]. 2017.

基金

国家重点研发计划(2021YFB2500501); 浙江省重点研发计划(2020C01040)

PDF(1833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/