考虑频率二次跌落的风电机组调频控制研究

盛四清, 占志刚, 吴林林, 王潇, 邓晓洋, 孙大卫

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 485-491.

PDF(15160 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(15160 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 485-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0644

考虑频率二次跌落的风电机组调频控制研究

  • 盛四清1, 占志刚1, 吴林林2, 王潇2, 邓晓洋2, 孙大卫2
作者信息 +

RESEARCH ON FREQUENCY REGULATION CONTROL OF WIND TURBINES CONSIDERING SECONDARY FREQUENCY DROP

  • Sheng Siqing1, Zhan Zhigang1, Wu Linlin2, Wang Xiao2, Deng Xiaoyang2, Sun Dawei2
Author information +
文章历史 +

摘要

该文首先分析系统经典响应模型和传统火电机组内部的延时过程,并提出一种考虑协同火电机组的一次调频策略改善系统一次调频效果,其中风电机组配合同步发电机组内部惯性延时过程。为有效利用可用的转子动能储备找到最佳调频系数大小,使用粒子群优化算法(PSO)针对稳定风速情况下的风电机组输出进行优化,满足系统条件限制(例如频率最低点、频率变化率ROCOF等),决定调频系数Kc值大小和具体退出时间。并利用分段能量降幅信号作用于变流器控制来提升转子转速恢复,从而减小频率二次跌落深度。最后在Matlab/Simulink仿真软件建立的四机两区电网模型中对所提方案进行验证,为新能源参与系统频率调节提供基础。

Abstract

As the penetration rate of new energy wind power increases, the equivalent inertia of the new energy power system gradually decreases, which leads to the deterioration of frequency response. The use of wind turbine rotor kinetic energy for auxiliary frequency regulation has become the current mainstream. The problem of secondary frequency drop is caused, which brings new challenges to the control strategy and exit strategy of the wind turbine converter. To this end, the classical response model of the system and the internal delay process of traditional thermal power units are firstly analyzed, and a primary frequency regulation strategy considering the coordination of thermal power units is proposed to improve the primary frequency regulation effect of the system, in which wind turbine is coupled with inertia delay process of synchronous generator set. In order to effectively use the available rotor kinetic energy reserve to find the optimal frequency regulation coefficient, particle swarm optimization (PSO) is used to optimize the output of the wind turbine under the condition of stable wind speed, and the frequency regulation Kc value size and specific exit time is determined by satisfying the system conditions such as the frequency minimum point, ROCOF, etc. And use the segmented energy drop signal to act on the converter control to improve the rotor speed recovery, thereby reducing the frequency secondary drop depth. Finally, the proposed scheme is verified in the 4-machine 2-zone power grid model established by Matlab/Simulink simulation software, which provides a basis for new energy to participate in the frequency regulation of the system.

关键词

一次调频 / 频率二次跌落 / 双馈风电机组 / 主动支撑 / 调频支撑 / 智能算法

Key words

primary frequency regulation / secondary frequency drop / DFIG / active support / frequency modulation support / intelligent algorithm

引用本文

导出引用
盛四清, 占志刚, 吴林林, 王潇, 邓晓洋, 孙大卫. 考虑频率二次跌落的风电机组调频控制研究[J]. 太阳能学报. 2023, 44(8): 485-491 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0644
Sheng Siqing, Zhan Zhigang, Wu Linlin, Wang Xiao, Deng Xiaoyang, Sun Dawei. RESEARCH ON FREQUENCY REGULATION CONTROL OF WIND TURBINES CONSIDERING SECONDARY FREQUENCY DROP[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 485-491 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0644
中图分类号: TK513.5   

参考文献

[1] 陶骞, 贺颖, 潘杨, 等. 电力系统频率分布特征及改进一次调频控制策略研究[J]. 电力系统保护与控制, 2016, 44(17): 133-138.
TAO Q, HE Y, PAN Y, et al.Characteristics of power system frequency abnormal distribution and improved primary frequency modulation control strategy[J]. Power system protection and control, 2016, 44(17): 133-138.
[2] 杨蕾, 李胜男, 黄伟, 等. 考虑风光新能源参与二次调频的多源最优协同控制[J].电力系统保护与控制, 2020, 48(19): 43-49.
YANG L, LI S N, HUANG W, et al.Optimal coordinated control of multi-source for AGC with participation of wind and solar energy[J]. Power system protection and control, 2020, 48(19): 43-49
[3] 盛四清, 俞可, 张文朝, 等. 大规模风电并网对送端系统功角稳定的影响研究[J]. 电力系统保护与控制, 2022, 50(6): 82-90.
SHENG S Q, YU K, ZHANG W C, et al.Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J]. Power system protection and control, 2022, 50(6): 82-90.
[4] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T L, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[5] 梁丹琦, 汪震. 考虑频率二次跌落抑制的风火联合一次调频控制[J]. 能源工程, 2021(5): 29-34,78.
LIANG D Q, WANG Z.A wind-thermal combination based primary frequency control scheme considering suppression of frequency second dip[J]. Energy engineering, 2021(5): 29-34, 78.
[6] 范冠男, 刘吉臻, 孟洪民, 等. 电网限负荷条件下风电场一次调频策略[J]. 电网技术, 2016, 40(7): 2030-2037.
FAN G N, LIU J Z, MENG H M, et al.Primary frequency control strategy for wind farms under output-restricted condition[J]. Power system technology, 2016, 40(7): 2030-2037.
[7] 林俐, 朱晨宸, 郑太一, 等. 风电集群有功功率控制及其策略[J]. 电力系统自动化, 2014, 38(14): 9-16.
LIN L, ZHU C C, ZHENG T Y, et al.Active power control of wind farm cluster and its strategy[J]. Automation of electric power systems, 2014, 38(14): 9-16.
[8] 孙伟卿, 罗静, 张婕. 高比例风电接入的电力系统储能容量配置及影响因素分析[J]. 电力系统保护与控制, 2021, 49(15): 9-18.
SUN W Q, LUO J, ZHANG J.Energy storage capacity allocation and influence factor analysis of a power system with a high proportion of wind power[J]. Power system protection and control, 2021, 49(15): 9-18.
[9] HUANG L B, XIN H H, ZHANG L Q, et al.Synchronization and frequency regulation of DFIG based wind turbine generators with synchronized control[J]. IEEE transactions on energy conversion, 2017, 32(3): 1251-1262.
[10] MORREN J,HAAN S W H D, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE transactions on power systems,2006, 21(1): 433-434.
[11] KANG M S, LEE J, HUR K,et al.Stepwise inertial control of a doubly-fed induction generator to prevent a second frequency dip[J]. Journal of electrical engineering & technology, 2015, 10(6): 2221-2227.
[12] DE ALMEIDA R G,LOPES J A P. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE transactions on power systems, 2007,22(3) : 944-950.
[13] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
QIAO Y, GUO X X, LU Z X, et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power system technology, 2020, 44(3): 807-815.
[14] 何成明, 王洪涛, 孙华东, 等. 变速风电机组调频特性分析及风电场时序协同控制策略[J]. 电力系统自动化, 2013, 37(9): 1-6, 59.
HE C M, WANG H T, SUN H D, et al.Analysis on frequency control characteristics of variable-speed wind turbines and coordinated frequecy control strategy of wind farm[J]. Automation of electric power systems, 2013, 37(9): 1-6, 59.
[15] 薛迎成, 邰能灵, 宋凯, 等. 变速风力发电机提供调频备用容量研究[J]. 电力自动化设备, 2010, 30(8): 75-80.
XUE Y C, TAI N L, SONG K, et al.Variable speed wind turbines provide primary reserve for frequency control[J]. Electric power automation equipment, 2010, 30(8): 75-80.
[16] 杨德健, 许益恩, 高洪超, 等. 计及转速平滑恢复的双馈风电机组自适应频率控制策略[J]. 电力系统保护与控制, 2022, 50(6): 172-179.
YANG D J, XU Y E, GAO H C, et al.Self-adaptive frequency control scheme of a doubly-fed induction generator with smooth rotor speed recovery[J]. Power system protection and control, 2022, 50(6): 172-179.
[17] ALSUMIRI M, LI L Y, JIANG L, et al.Residue Theorem based soft sliding mode control for wind power generation systems[J]. Protection and control of modern power systems, 2018, 3(1): 247-258.
[18] 颜湘武, 孙雪薇, 崔森, 等. 考虑系统频率连续波动与二次跌落的双馈风力发电机组虚拟惯量通用控制策略[J]. 太阳能学报, 2021, 42(11): 247-254.
YAN X W, SUN X W, CUI S, et al.Virtual inertia general control strategy of DFIG-based wind turbine considering continuous fluctuation of system frequency and second frequency drop[J]. Acta energiae solaris sinica, 2021, 42(11): 247-254.
[19] 张雯欣, 吴琛, 黄伟, 等. 考虑频率二次跌落的系统频率特征评估及风电调频参数整定[J]. 电力系统自动化, 2022, 46(8): 11-19.
ZHANG W X, WU C, HUANG W, et al.Evaluation of system frequency characteristic and parameter setting of frequency regulation for wind power considering secondary frequency drop[J]. Automation of electric power systems, 2022, 46(8): 11-19.
[20] 姚雅涵, 姚伟, 熊永新, 等. 经多端直流并网的海上风电场调频协同控制和风机转速恢复策略[J]. 高电压技术, 2021, 47(10): 3537-3548.
YAO Y H, YAO W, XIONG Y X, et al.Coordinated frequency support and wind turbine preset restoration scheme of VSC-MTDC integrated offshore wind farms[J]. High voltage engineering, 2021, 47(10): 3537-3548.
[21] ANDERSON P M, MIRHEYDAR M.A low-order system frequency response model[J]. IEEE transactions on power systems, 1990, 5(3): 720-729.
[22] 鲍威宇. 风电惯量参与电网调频的控制研究[D]. 济南:山东大学, 2021.
BAO W Y.Studies on participation of wind power inertia in power system frequency control[D]. Ji’nan: Shandong University, 2021.

基金

华北电科院自有资金科技项目

PDF(15160 KB)

Accesses

Citation

Detail

段落导航
相关文章

/