基于Spearman系数和TCN的光伏出力超短期多步预测

吴珺玥, 赵二刚, 郭增良, 张亚萍, 张建军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 180-186.

PDF(1860 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1860 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 180-186. DOI: 10.19912/j.0254-0096.tynxb.2022-0654

基于Spearman系数和TCN的光伏出力超短期多步预测

  • 吴珺玥1~3, 赵二刚1~3, 郭增良4, 张亚萍4, 张建军1~3
作者信息 +

ULTRA-SHORT-TERM PHOTOVOLTAIC POWER MULTI-STEP PREDICTION BASED ON SPEARMAN COEFFICIENT AND TCN

  • Wu Junyue1-3, Zhao Ergang1-3, Guo Zengliang4, Zhang Yaping4, Zhang Jianjun1-3
Author information +
文章历史 +

摘要

研究一种基于Spearman相关系数和改进时间卷积网络(TCN)的超短期多步光伏功率预测方法。首先,采用Spearman相关系数方法对输入的天气特征量进行筛选;然后,构建合适的时间卷积网络使其适配光伏功率预测问题。经过实际的光伏电站数据测试,单步预测模型拟合度为99.41%,预测平均绝对误差为61.04,均优于传统的长短期记忆神经网络(LSTM)。

Abstract

This paper developed a ultra-short-term photovoltaic power prediction model based on Spearman coefficient and improved TCN. First, we used Spearman coefficient to screen the input weather characteristics, and then we built a proper TCN to make it suitable for the photovoltaic power prediction problems. Through the actual data test of photovoltaic power station, the fitting degree of the model is 99.41%, and MAE of prediction is 61.04, which is better than the traditional time series problem model LSTM.

关键词

光伏发电 / 预测 / 神经网络 / 数据处理 / 时间序列

Key words

PV power generation / forecasting / neural networks / data processing / time series

引用本文

导出引用
吴珺玥, 赵二刚, 郭增良, 张亚萍, 张建军. 基于Spearman系数和TCN的光伏出力超短期多步预测[J]. 太阳能学报. 2023, 44(9): 180-186 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0654
Wu Junyue, Zhao Ergang, Guo Zengliang, Zhang Yaping, Zhang Jianjun. ULTRA-SHORT-TERM PHOTOVOLTAIC POWER MULTI-STEP PREDICTION BASED ON SPEARMAN COEFFICIENT AND TCN[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 180-186 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0654
中图分类号: TM615   

参考文献

[1] PARIDA B, INIYAN S, GOIC R.A review of solar photovoltaic technologies[J]. Renewable & sustainable energy reviews, 2011,15(3): 1625-1636.
[2] 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5): 20-28.
WANG Q, SUN D, ZHANG H X, et al. Review of China’s photovoltaic industry in2021 and outlook for 2022[J]. Electric age, 2022(5): 20-28.
[3] SUKUMAR S, MARSADEK M, AGILESWARI K R, et al.Ramp-rate control smoothing methods to control output power fluctuations from solar photovoltaic(PV) sources—a review[J]. Journal of energy storage, 2018, 20: 218-229.
[4] GUAN J Y,TANG H, WANG K, et al.A parallel multi-scenario learning method for near-real-time power dispatch optimization[J]. Energy, 2020, 202: 117708.
[5] YANG D Z, WANG W T, GUEYMARD C A, et al.A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration:towards carbon neutrality[J]. Renewable and sustainable energy reviews, 2022, 161: 112348.
[6] WAN C, ZHAO J, SONG Y H, et al.Photovoltaic and solar power forecasting for smart grid energy management[J]. CSEE journal of power and energy systems, 2015, 1(4): 38-46.
[7] KOSTER D, MINETTE F, BRAUN C, et al.Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg[J].Renewable energy, 2019, 132: 455-470.
[8] GANDOMAN F H, ALEEM S H E A, OMAR N,et al. Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects[J]. Renewable energy, 2018, 123: 793-805.
[9] WOLFF B, KUHNERT J, LORENZ E, et al.Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data[J]. Solar energy, 2016, 135:197-208.
[10] 阳霜, 罗滇生, 何洪英, 等. 基于EMD-LSSVM的光伏发电系统功率预测方法研究[J]. 太阳能学报, 2016, 37(6): 1387-1395.
YANG S,LUO D S,HE H Y,et al.Output power forecast of PV power system based on EMD-LSSVM model[J]. Acta energiae solaris sinica, 2016, 37(6): 1387-1395.
[11] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017, 41(21): 33-39.
TAN J,DENG C H,YANG W,et al.Ultra-short-term photovoltaic power forecasting in microgrid based on adaboost clustering[J]. Automation of electric power systems, 2017, 41(21): 33-39.
[12] MEI F, PAN Y, ZHU K D, et al.A hybrid online forecasting model for ultrashort-term photovoltaic power generation[J]. Sustainability, 2018, 10(3): 820.
[13] PELLAND S,REMUND J, KLEISSL J, et al.Photovoltaic and solar forecasting: state of the art[R]. IEA PVPS Task 14, 2013.
[14] TAWN R,BROWELL J.A review of very short-term wind and solar power forecasting[J]. Renewable and sustainable energy reviews, 2022, 153: 111758.
[15] 田剑刚, 张沛, 彭春华, 等. 基于分时长短期记忆神经网络的光伏发电超短期功率预测[J]. 现代电力, 2020, 37(6): 629-638.
TIAN J G,ZHANG P,PENG C H,et al.Ultra short-term forecast of photovoltaic generation based on time-division long short-term memory neural networks[J].Modern electric power, 2020, 7(6): 629-638.
[16] KIM D,KWON D, PARK L, et al.Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management[J]. IEEE systems journal, 2021, 15(1): 346-354.
[17] BAI S J, KOLTER J Z, KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://doi.org/10.48550/ arXiv. 1803. 01271.
[18] 刘晓艳, 王珏, 姚铁锤, 等. 基于时序数据处理的分布式光伏功率预测系统[J].数据与计算发展前沿, 2021, 3(4): 140-148.
LIU X Y, WANG J, YAO T C, et al.A distributed photovoltaic power prediction system based on time series data processing[J]. Frontiers of data & computing, 2021,3(4): 140-148.
[19] 张友浩, 赵鸣, 徐梦瑶, 等. 时序数据挖掘的预处理研究综述[J]. 智能计算机与应用, 2021, 11(1): 74-78.
ZHANG Y H, ZHAO M, XU M Y, et al.Summary of research on preprocessing of time series data mining[J]. Intelligent computer and applications, 2021, 11(1):74-78.
[20] DE GIORGI M G, MALVONI M, CONGEDO P M.Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine[J]. Energy, 2016, 107: 360-373.

PDF(1860 KB)

Accesses

Citation

Detail

段落导航
相关文章

/