严寒地区中深层地埋管换热影响因素及可持续性研究

王子红, 郭亮亮, 周雪雨, 梅振宙

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 483-492.

PDF(2022 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2022 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 483-492. DOI: 10.19912/j.0254-0096.tynxb.2022-0656

严寒地区中深层地埋管换热影响因素及可持续性研究

  • 王子红1, 郭亮亮1, 周雪雨1, 梅振宙2
作者信息 +

STUDY ON INFLUENCING FACTORS AND SUSTAINABILITY OF HEAT EXCHANGE OF MIDDLE-DEEP GEOTHERMAL ENERGY IN SEVERE COLD REGION

  • Wang Zihong1, Guo Liangliang1, Zhou Xueyu1, Mei Zhenzhou2
Author information +
文章历史 +

摘要

利用OpenGeoSys(OGS)软件,采用双连续体介质方法并结合实际工程资料,建立中深层地埋管换热数值模型。在此基础上,研究中深层地埋管换热技术在中国北方严寒地区的换热性能及其适用性,同时对其换热影响因素及可持续性进行研究。研究结果表明:在中国北方严寒地区,中深层地埋管换热技术换热性能较好,具有良好的适用性及可持续性。通过将地埋管布置在优质地热区域,同时增大循环水流量、增加地埋管深度、选择较大内管导热系数及回填材料导热系数等方式可提高地埋管换热功率;较高的循环水进水温度、较大的内外管径比及内管导热系数则会减弱换热效果。

Abstract

Using the dual continuum medium method, a comprehensive numerical model of buried pipe heat transfer is established. On this basis, we evaluate the applicability of this technology in the severe cold region of northern China. At the same time, the influencing factors and sustainability of its heat transfer are studied. The research results show that in the severe cold region of northern China, the heat transfer performance of the mid-deep buried tube heat exchange technology is excellent, and it has good applicability and sustainability. The increase of the circulating water flow, the buried pipe depth, the thermal conductivity of inner pipes or the thermal conductivity of backfill materials can improve the heat transfer power; of the buried pipe. However, the increase of circulating water inlet temperature, inner and outer pipe diameter ratio or inner pipe thermal conductivity will reduce the heat transfer effect.

关键词

地热能 / 换热性能 / 数值模拟 / 严寒地区 / 可持续性

Key words

geothermal energy / heat transfer performance / numerical simulation / cold region / sustainability

引用本文

导出引用
王子红, 郭亮亮, 周雪雨, 梅振宙. 严寒地区中深层地埋管换热影响因素及可持续性研究[J]. 太阳能学报. 2023, 44(9): 483-492 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0656
Wang Zihong, Guo Liangliang, Zhou Xueyu, Mei Zhenzhou. STUDY ON INFLUENCING FACTORS AND SUSTAINABILITY OF HEAT EXCHANGE OF MIDDLE-DEEP GEOTHERMAL ENERGY IN SEVERE COLD REGION[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 483-492 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0656
中图分类号: P314   

参考文献

[1] 黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021, 50(9): 1-10.
HUANG H, LIU R, LI Q, et al.Overview on multi-level utilization techniques of geothermal energy[J]. Thermal power generation, 2021, 50(9): 1-10.
[2] 邵珠坤. 深孔套管式地埋管换热器传热数值分析及其应用[D]. 济南: 山东建筑大学, 2018.
SHAO Z K.Numerical analysis and application of heat transfer in deep hole coaxial tube ground heat exchanger[D]. Ji’nan: Shandong Jianzhu University, 2018.
[3] MIELKE P, BAUER D, HOMUTH S, et al.Thermal effect of a borehole thermal energy store on the subsurface[J]. Geothermal energy, 2014, 2(1): 2-5.
[4] 方肇洪, 贾林瑞, 张方方, 等. 中深层地埋管群的传热分析[J]. 山东建筑大学学报, 2021, 36(2): 1-8.
FANG Z H, JIA L R, ZHANG F F, et al.Analysis on the heat transfer of deep borehole cluster[J]. Journal of Shandong Jianzhu University, 2021, 36(2): 1-8.
[5] INGERSOLL L R, PLASS H J.Theory of the ground pipe heat source for the heat pump[J]. ASHRAE transactions, 1948, 54(7): 339-348.
[6] DEERMAN J D, KAVANAUGH S P.Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution[J]. ASHRAE transactions, 1990, 97(1): 287-295.
[7] BEIER R A, ACUNA J, MOGENSEN P, et al.Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482.
[8] GUO L L, ZHANG J, LI Y R, et al.Experimental and numerical investigation of the influence of groundwater flow on the borehole heat exchanger performance: a case study from Tangshan, China[J]. Energy and buildings, 2021, 248: 111199.
[9] DENG J W, WEI Q P, HE S, et al.Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems[J]. Energies, 2020, 13(3): 754.
[10] ZHANG Y Q, YU C, LI G S, et al.Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids[J]. Applied thermal engineering, 2019, 163: 114317.
[11] 鲍玲玲, 徐豹, 王子勇, 等. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展, 2020, 35(4): 1217-1222.
BAO L L, XU B, WANG Z Y, et al.Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in geophysics, 2020, 35(4): 1217-1222.
[12] 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热功率评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
KONG Y L, CHEN C F, SHAO H B, et al.Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese journal of geophysics, 2017, 60(12): 4741-4752.
[13] HUANG Y B, ZHANG Y J, XIE Y Y, et al.Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating[J]. Energy and buildings, 2020, 221: 110019.
[14] CHEN C F, SHAO H B, NAUMOV D, et al.Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal energy, 2019, 7(1): 1-26.
[15] HOLMBERG H, ACUNA J, NASS E, et al.Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable energy, 2016, 97: 65-76.
[16] DIERSCH H J G, BAUER D, HEIDEMANN W, et al. Finite element modeling of borehole heat exchanger systems: part 1. fundamentals[J]. Computers & geosciences, 2011, 37(8): 1122-1135.
[17] 刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统实验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150.
LIU J, CAI W L, WANG F H, et al.Experimental study and tube structure optimization of deep borehole ground source heat pump[J]. Journal of engineering thermophysics, 2019, 40(9): 2143-2150.
[18] 蔡皖龙, 刘俊, 王沣浩, 等. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报, 2020, 41(2): 158-164.
CAI W L, LIU J, WANG F H, et al.Research on heat transfer performance and stability of deep borehole heat exchanger[J]. Acta energiae solaris sinica, 2020, 41(2): 158-164.
[19] 李骥, 徐伟, 李建峰, 等. 中深层地埋管供热技术综述及工程实测分析[J]. 暖通空调, 2020, 50(8): 35-39.
LI J, XU W, LI J F, et al.Heat supply technology review and engineering measurement analysis of medium and deep buried pipes[J]. Heating ventilating & air conditioning, 2020, 50(8): 35-39.

基金

山西省基础研究计划(面上项目)(202203021211127); 中国博士后科学基金(2020T130390; 2019M661053); 山东省第一地质矿产勘查院开放基金(2022DY09)

PDF(2022 KB)

Accesses

Citation

Detail

段落导航
相关文章

/