厨余垃圾厌氧消化与微生物电解池耦合产甲烷全生命周期评价

郭美欣, 朱雨森, 郭萌, 李鸣晓, 亓雪娇, 贾璇

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 424-431.

PDF(1656 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1656 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 424-431. DOI: 10.19912/j.0254-0096.tynxb.2022-0660

厨余垃圾厌氧消化与微生物电解池耦合产甲烷全生命周期评价

  • 郭美欣1,2, 朱雨森1,2, 郭萌1,2, 李鸣晓3, 亓雪娇3, 贾璇1,2
作者信息 +

LIFE CYCLE ASSESSMENT OF COUPLING PROCESS OF ANAEROBIC DIGESTION AND MICROBIAL ELECTROLYSIS CELLS FOR METHANE PRODUCTION FROM FOODWASTE

  • Guo Meixin1,2, Zhu Yusen1,2, Guo Meng1,2, Li Mingxiao3, Qi Xuejiao3, Jia Xuan1,2
Author information +
文章历史 +

摘要

厌氧消化(AD)是厨余垃圾清洁能源化的主流工艺,通过构建AD与微生物电解池(MEC)耦合工艺(AD-MEC),基于全生命周期评价(LCA)对比AD与AD-MEC耦合工艺处理厨余垃圾产甲烷的环境影响,解析各功能单元的环境影响贡献,并提出优化方案。结果表明,与传统AD工艺相比,新型AD-MEC耦合工艺在富营养化、气候变化、水资源消耗、酸化和初级能源消耗的环境影响潜值均低于AD工艺,削减比例分别为70.28%、39.53%、92.29%、49.68%和41.2%。贡献源解析发现,AD-MEC耦合工艺的预处理和污水处理单元为环境影响的主要贡献源,MEC和AD单元影响较小。基于此,对AD-MEC耦合工艺进行优化,将废水处理单元的出水回用至预处理单元,水资源消耗的环境影响潜值进一步削减61.48%。可见,采用AD-MEC耦合工艺进行厨余垃圾厌氧产沼,通过沼液的深度利用、沼气净化提质和废水回用,可有效减少厨余垃圾处理工艺对环境的影响和资源消耗,具有显著的经济效益和生态环境价值。

Abstract

Anaerobic digestion (AD) is the mainstream process for clean energy utilization of food waste. By constructing a coupled process (AD-MEC) of AD and microbial electrolysis cells (MEC), the environmental impacts of AD and AD-MEC, which produced methane by treating food waste, were compared based on whole life cycle assessment (LCA). The environmental impact contribution of each functional unit was analyzed, and an optimization scheme was proposed. The results showed that compared with the traditional AD process, the potential environmental impacts of the new AD-MEC were lower than those of the AD in terms of eutrophication, climate change, water consumption, acidification and primary energy consumption, with reduction ratios of 70.28%, 39.53%, 92.29%, 49.68% and 41.2% respectively. The analysis of the contributing sources revealed that the pretreatment and wastewater treatment units of the coupled AD-MEC process were the main contributors to the environmental impact, with the MEC and AD units having a smaller impact. Based on the result, the coupled AD-MEC was optimized and the effluent from the wastewater treatment unit was reused in the pre-treatment unit. The potential environmental impact of water consumption was further reduced by 61.48%. Therefore, the AD-MEC coupled process for biogas production from food waste has significant economic and ecological value by effectively reducing the environmental impact and resource consumption of the food waste treatment process through the in-depth utilization of the biogas slurry, the purification and quality of the biogas and the reuse of the wastewater.

关键词

厨余垃圾 / 厌氧消化 / 微生物电催化 / 甲烷 / 全生命周期评价 / 贡献源解析

Key words

food waste / anaerobic digestion / microbial electrocatalysis / methane / whole life cycle assessment / contribution source analysis

引用本文

导出引用
郭美欣, 朱雨森, 郭萌, 李鸣晓, 亓雪娇, 贾璇. 厨余垃圾厌氧消化与微生物电解池耦合产甲烷全生命周期评价[J]. 太阳能学报. 2023, 44(9): 424-431 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0660
Guo Meixin, Zhu Yusen, Guo Meng, Li Mingxiao, Qi Xuejiao, Jia Xuan. LIFE CYCLE ASSESSMENT OF COUPLING PROCESS OF ANAEROBIC DIGESTION AND MICROBIAL ELECTROLYSIS CELLS FOR METHANE PRODUCTION FROM FOODWASTE[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 424-431 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0660
中图分类号: X705   

参考文献

[1] WANG J, FENG L, PALMER P I, et al.Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723.
[2] MORITA M, MALVANKAR N S, FRANKS A E, et al.Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. Nature, 2011, 2(4): e00159-e00111.
[3] WEGENER G, KRUKENBERG V, RIEDEL D, et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J]. Nature, 2015, 526(7574): 587-590.
[4] MCGLYNN S E, CHADWICK G L, KEMPES C P, et al.Single cell activity reveals direct electron transfer in methanotrophic consortia[J]. Nature, 2015, 526(7574): 531-535.
[5] FU X Z, LI J, PAN X R, et al.A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery[J]. Bioresource technology, 2020, 297: 122448.
[6] LOGAN B E, RABAEY K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337(6095): 686-690.
[7] YU Z, LIU W Z, SHI Y J, et al.Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion[J]. Science of the total environment, 2021, 767: 144344.
[8] WANG H, LIU Y, DU H X, et al.Exploring the effect of voltage on biogas production performance and the methanogenic pathway of microbial electrosynthesis[J]. Biochemical engineering journal, 2021, 171: 108028.
[9] LIU H Z, ZHANG Y R, YANG S X, et al.Introducing electrolysis to enhance anaerobic digestion resistance to acidification[J]. Bioprocess and biosystems engineering, 2022, 45(3): 515-525.
[10] HASSANEIN A, WITARSA F, LANSING S, et al.Bio-electrochemical enhancement of hydrogen and methane production in a combined anaerobic digester(AD) and microbial electrolysis cell(MEC) from dairy manure[J]. Sustainability, 2020, 12(20): 8491.
[11] BAO H X, YANG H, ZHANG H, et al.Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system[J]. Environmental research, 2020, 180: 108863.
[12] 潘发存. 餐厨垃圾资源化利用产沼气发电的生命周期评价[D]. 南宁: 广西大学, 2018.
PAN F C.Life cycle assessment of the utilization of kitchen waste to produce biogas for power generation[D]. Nanning: Guangxi University, 2018.
[13] 刘航驿, 颜蓓蓓, 林法伟, 等. 生命周期视角下2种餐厨垃圾资源化处理方案的对比分析[J]. 环境工程, 2021, 39(9): 169-175.
LIU H Y, YAN B B, LIN F W, et al.Comparative analysis of two kinds of food waste recycling schemes from the perspective of LCA[J]. Environmental engineering, 2021, 39(9): 169-175.
[14] WU M K, HU J G, SHEN F, et al.Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management[J]. Journal of cleaner production, 2021, 306: 127292.
[15] FOLEY J M, ROZENDAL R A, HERTLE C K, et al.Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells[J]. Environmental science & technology, 2010, 44(9): 3629-3637.
[16] ZHANG J Y, YUAN H Y, ABU-REESH I M, et al. Life cycle environmental impact comparison of bioelectrochemical systems for wastewater treatment[J]. Procedia CIRP, 2019, 80: 382-388.
[17] 王欣. 基于改进LCA的污泥处置环境影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WANG X.Environmental impact analysis of sludge disposal based on improved LCA[D]. Harbin: Harbin Institute of Technology, 2019.
[18] 宋雨田, 王雪强, 毕胜山, 等. 燃料电池公共汽车氢能利用系统评价[J]. 太阳能学报, 2018, 39(3): 651-658.
SONG Y T, WANG X Q, BI S S, et al.Assessment of fuel cell bus hydrogen energy system[J]. Acta energiae solaris sinica, 2018, 39(3): 651-658.
[19] SOLEYMANI A T, GRZESIK K, RÖDL A, et al. Life cycle assessment of bioethanol production: a review of feedstock, technology and methodology[J]. Energies, 2021, 14(10): 2939-2939.
[20] 刘蔚, 毛开伟, 张廷军, 等. 生命周期评价体系的开发及其在生物质资源化领域的应用进展[J]. 环境工程, 2019, 37: 384-388.
LIU W, MAO K W, ZHANG T J, et al.Development of life cycle assessment and application in biomass resource recovery[J]. Environmental engineering, 2019, 37: 384-388.
[21] 夏芳芳, 谭婧, 周洋, 等. 杭州天子岭餐厨垃圾厌氧消化沼气项目案例研究[J]. 中国沼气, 2018, 36(2): 75-80.
XIA F F, TAN J, ZHOU Y, et al.Case study of hangzhou tianziling food waste anaerobic digestion project[J]. China biogas, 2018, 36(2): 75-80.
[22] DYKSTRA C M, CHENG C, PAVLOSTATHIS S G, et al.Comparison of carbon dioxide with anaerobic digester biogas as a methanogenic biocathode feedstock[J]. Environmental science & technology, 2020, 54(4): 8949-8957.
[23] CUSICK R D, BRYAN B, PARKER D, et al.Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater[J]. Applied microbiology and biotechnology, 2011, 89(6): 2053-2063.
[24] 汪涛. 餐厨垃圾厌氧消化处理全过程综合评价研究[D].杭州: 浙江大学, 2021.
WANG T.Study on comprehensive assessment of whole process for food waste anaerobic digestion[D]. Hangzhou: Zhejiang University, 2021.
[25] 操家顺, 赵嘉楠, 操乾, 等. 基于生命周期评价的两种城市生活垃圾处理模式对比[J]. 环境保护科学, 2019, 45(6): 92-100.
CAO J S, ZHAO J N, CAO Q, et al.Comparison of two disposal modes of municipal solid waste based on life cycle assessment[J]. Environmental protection science, 2019, 45(6): 92-100.
[26] 赵秀娟, 贾俊龙, 王倩, 等. 碳中和背景下生命周期评价方法在烧结工序的应用[J]. 河北冶金, 2021(7): 78-84.
ZHAO X J, JIA J L, WANG Q, et al.Application of life cycle assessment in the sintering process under the background of carbon neutrality[J]. Hebei metallurgy, 2021(7): 78-84.
[27] 衣瑞建, 张万钦, 周捷, 等. 基于LCA方法沼渣沼液生产利用过程的环境影响分析[J]. 可再生能源, 2015, 33(2): 301-307.
YI R J, ZHANG W Q, ZHOU J, et al.Environmental impact analysis on the production and utilization of digestate based on LCA method[J]. Renewable energy resources, 2015, 33(2): 301-307.
[28] ZHANG T, BAIN T S, BARLETT M A, et al.Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1[J]. Microbiology, 2014, 160(Pt1): 123-129.
[29] LIU C Q, XIAO J W, LI H Y, et al.High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input[J]. Water research, 2021, 197: 117055.

基金

国家重点研发计划(2019YFD1100304)

PDF(1656 KB)

Accesses

Citation

Detail

段落导航
相关文章

/