以IEA 15 MW参考风电机组为研究对象,基于修正的极坐标网格叶素动量理论与Timoshenko梁模型,建立叶片气弹耦合分析模型,综合时域和频域方法,分析超大型风电机组叶片失控状态下的气弹稳定性。结果表明,叶片发生颤振失稳,临界颤振速度为13.06 r/min,颤振频率为3.68 Hz,颤振模态主导振型为三阶向前挥舞模态伴随一阶向前扭转模态。此外,定量分析临界颤振速度对于空气密度、叶片质量、截面重心、挥舞刚度和扭转刚度变化的灵敏度。分析表明,扭转刚度是影响临界颤振速度的主导因素,通过减少叶片质量和前移截面重心,增大挥舞刚度和扭转刚度,可提高颤振裕度。采用高空气密度的设计条件,可获得更保守的设计额定转速。
Abstract
Taking the IEA wind 15MW reference wind turbine as the research object, the aeroelastic coupling analysis model of the blade is established based on the modified blade element momentum theory on a polar grid and Timoshenko beam model. And the aeroelastic stability of the ultra-long blades is studied in the runaway situation by combining time-domain and frequency-domain methods. The results show that the blade flutter occurs when the critical rotor speed is 13.06 r/min, and the flutter frequency is 3.68 Hz, whose dominant mode shapes are the third-order forward flapwise mode and the first-order forward torsional mode. Besides, the sensitivities of critical flutter speed to air density, blade mass, section center of gravity, flapwise stiffness, and torsional stiffness are quantitatively analyzed. As a result, it is demonstrated that torsional stiffness is the dominant factor affecting the critical flutter speed, and the flutter margin can be improved by reducing the blade mass, shifting the cross-sectional center of gravity forward, and increasing the flapwise and torsional stiffness. In addition, it can obtain a more conservative design-rated rotor speed by considering high air density.
关键词
风电机组 /
气动弹性 /
颤振 /
模态分析 /
灵敏度分析
Key words
wind turbines /
aeroelasticity /
flutter /
modal analysis /
sensitivity analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张礼贤, 施伟, 李昕, 等. 风冰联合作用下大型单桩海上风电机组动力特性[J]. 太阳能学报, 2023, 44(2): 59-66.
ZHANG L X, SHI W, LI X, et al.Dynamic characteristics of large monopile offshore wind turbine under the combined action of wind-ice interaction[J]. Acta energiae solaris sinica, 2023, 44(2): 59-66.
[2] HOLIERHOEK J G.Aeroelastic stability models:handbook of wind energy aerodynamics[M]. Cham: Springer, 2020: 1-45.
[3] VEERS P, DYKES K, LANTZ E, et al.Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): 1-9.
[4] PIRRUNG G R, MADSEN H A, KIM T.The influence of trailed vorticity on flutter speed estimations[J]. Journal of physics: conference series, 2014, 524(1): 012048.
[5] SHAKYA P, SUNNY M R, MAITI D K.Time domain flutter analysis of bend-twist coupled large composite wind turbine blades: a parametric study[J]. Mechanics based design of structures and machines, 2022, 50(11): 4048-4070.
[6] HUA X G, MENG Q S, CHEN B, et al.Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine[J]. Advances in structural engineering, 2020, 23(14): 3037-3047.
[7] HANSEN M H.Aeroelastic instability problems for wind turbines[J]. Wind energy, 2007, 10(6): 551-577.
[8] HACH O, VERDONCK H, POLMAN J D, et al.Wind turbine stability: comparison of state-of-the-art aeroelastic simulation tools[J]. Journal of physics: conference series, 2020, 1618(5): 052048.
[9] VATNE S R.Aeroelastic instability and flutter for a 10 MW wind turbine[D]. Norway: Norwegian University of Science and Technoloy, 2011.
[10] RESOR B R, OWENS B C, GRIFFITH D T.Aeroelastic instability of very large wind turbine blades[C]// European Wind Energy Conference Annual Event. Copenhagen, Denmark: Curran Associates, Inc. 2012: 998-1003.
[11] GAO Q, CAI X, GUO X W, et al.Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade[J]. Journal of Central South University, 2018, 25(7): 1746-1754.
[12] POURAZARM P, MODARRES-SADEGHI Y,LACKNER M.A parametric study of coupled-mode flutter for MW-size wind turbine blades[J]. Wind energy, 2016, 19(3):497-514.
[13] LARSEN T J, HANSEN A M.How 2 HAWC2, the user’s manual[R]. Roskilde, Denmark: DTU Wind Energy 2019.
[14] HANSEN M H, HENRIKSEN L C.HAWCStab2 User Manual[R]. Roskilde, Denmark: DTU Wind Energy, 2018.
[15] GAERTNER E,RINKER J,SETHURAMAN L, et al.definition of the IEA wind 15-megawatt offshore reference wind turbine[R]. National Renewable Energy Laboratory, 2020.
[16] RINKER J, GAERTNER E, ZAHLE F, et al.Comparison of loads from HAWC2 and OpenFAST for the IEA wind 15 MW reference wind turbine[J]. Journal of physics: conference series, 2020, 1618(5): 052052.
[17] MADSEN H A, LARSEN T J, PIRRUNG G R, et al.Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact[J]. Wind energy science, 2020, 5(1): 1-27.
[18] EL KHCHINE Y, SRITI M.Tip loss factor effects on aerodynamic performances of horizontal axis wind turbine[J]. Energy procedia, 2017, 118: 136-140.
[19] LOBITZ D W.Aeroelastic stability predictions for a MW-sized blade[J]. Wind energy, 2004, 7(3): 211-224.
[20] HANSEN M H, GAUNAA M.A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[R]. Risø National Laboratory, Denmark, Risø-R-1354(EN), 2004.
[21] BAK C, ZAHLE F, BITSCHE R D, et al.The DTU 10-MW reference wind turbine[R]. Roskilde, Denmark: DTU Wind Energy, 2013.
[22] 姚兴佳, 田德. 风力发电机组设计与制造[M]. 北京: 机械工业出版社, 2012.
YAO X J, TIAN D.Wind generator’s design and manufacture[M]. Beijing: China Machine Press, 2012.
基金
国家重点研发计划(2018YFB1501304)