针对在实际安装中,固定支架的主轴会对双面组件背面产生一定比例遮挡的问题,建立基于光交检测算法的视角系数模型对双面组件背面辐照度进行更细致化、定量化的模拟。不均匀辐照度主要体现在每块电池片的背面辐照度不同,将热电耦合模型细化到电池片,解决双面组件在背面遮挡条件下的失配损失计算,完成双面组件在复杂工况下的建模工作。结合调研案例,以15年为投资周期,对比固定支架的3种主梁结构(常规支架、双主梁支架、单主梁支架)下双面光伏阵列的发电量及经济性,最终得出采用单主梁结构支架的双面光伏阵列年发电量净增益最大且经济效益最优的结论。
Abstract
In actual installation, the main shaft of the fixed bracket will block the back of bifacial PV module in a certain extent. Therefore, this paper established a view factor model based on the light cross detection algorithm to quantify the irradiance on the rear side of bifacial PV module in a more detailed manner. The non-uniform irradiance is mainly reflected in the different irradiance of each cell. This paper refined the thermoelectric coupling model to the cell side to solve the mismatch loss calculation of the bifacial module under the back shielding condition, and completed the modeling of bifacial PV module under complex working conditions. Finally, combined with the investigation case, the power generation and economic efficiency of three spindle structures of the fixed brackets on bifacial PV array were compared. Combined with the investigation case, taking 15 years as the investment cycle, the power generation and economy of double-sided photovoltaic array under three main beam structures of fixed support (conventional support, double main beam support and single main beam support) are compared. Finally, it is concluded that the annual power generation gain of double-sided photovoltaic array with single main beam structure support is the largest and the economic benefit is the best.
关键词
光伏 /
发电量仿真 /
失配 /
双面组件 /
背面遮挡
Key words
PV /
power generation /
mismatch /
bifacial PV modules /
rear side shading
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GUERRERO-LEMUS R, VEGA R, KIM T, et al.Bifacial solar photovoltaics: a technology review[J]. Renewable and sustainable energy reviews, 2016, 60: 1533-1549.
[2] DELINE C, AYALA P S, MACALPINE S, et al.Estimating and parameterizing mismatch power loss in bifacial photovoltaic systems[J]. Progress in photovoltaics: research and applications, 2020, 28(7): 691-703.
[3] HANSEN C W, STEIN J S, DELINE C, et al.Analysis of irradiance models for bifacial PV modules[C]//2016 IEEE 43rd Photovoltaic Specialists Conference(PVSC), Portland, OR, USA, 2016: 138-143.
[4] FRANK J, RUDIGER M, FISCHER S, et al.Optical simulation of bifacial solar cells[J]. Energy procedia, 2012, 27: 300-305.
[5] YUSUFOGLU U A, PLETZER T M, KODUVELIKULATHU L J, et al.Analysis of the annual performance of bifacial modules and optimization methods[J]. IEEE journal of photovoltaics, 2015, 5(1): 320-328.
[6] SUN X S, KHAN M R, DELINE C, et al.Optimization and performance of bifacial solar modules: a global perspective[J]. Applied energy, 2018, 212: 1601-1610.
[7] GU W B, MA T, LI M, et al.A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied energy, 2020, 258: 114075.
[8] YANG B, COX J, YUAN Y B, et al.Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins[J]. Applied physics letters, 2011, 99(13): 1-3.
[9] ALDALI Y, CELIK A N, MUNEER T.Modeling and experimental verification of solar radiation on a sloped surface, photovoltaic cell temperature, and photovoltaic efficiency[J]. Journal of energy engineering, 2013, 139(1): 8-11.
[10] SHOUKRY I, LIBAL J, KOPECEK R, et al.Modelling of bifacial gain for stand-alone and in-field installed bifacial PV modules[J]. Energy procedia, 2016, 92: 600-608.
[11] 张继平, 郝国强, 李红波, 等. 不同地面背景对双面光伏组件发电性能的影响[J]. 太阳能学报, 2020, 41(3): 298-304.
ZHANG J P, HAO G Q, LI H B, et al.Influence of different backgrounds on power generation performance of bifacial PV modules[J]. Acta energiae solaris sinica, 2020, 41(3): 298-304.
[12] 白建波. 光伏系统建模、仿真与优化[M]. 北京: 电子工业出版社, 2014.
BAI J B.Modeling, simulation and optimization of solar photovoltaic system[M]. Beijing: Publishing House of Electronics Industry, 2014.
基金
国家重点研发计划(2022YFB4201000); 国家自然科学基金面上项目(51676063)