采用SST k-ω湍流模型对冷却条件下超临界压力CO2(S-CO2)在等截面圆管、水平渐扩管以及不同倾斜角的渐扩管内的传热特性进行数值模拟。模拟结果表明,在相同换热面积下,相比较于等截面圆管,水平渐扩管的总传热系数提高了32.33%,30°倾斜渐扩管提高了33.12%;水平渐扩管的压降降低了53.87%,30°渐扩管降低了9.86%。采用综合性能评价准则PEC,得到水平渐扩管的综合性能最优。基于S-CO2在拟临界温度Tpc处发生“类相变”的假设,获得了类液膜厚度沿管长方向的分布规律,在同一截面处,30°渐扩管的类液膜厚度最小,等截面圆管的类液膜厚度最大,从超临界态类两相的角度解释了强化传热。
Abstract
The SST k-ω turbulence model was used to numerically simulate the heat transfer characteristics of supercritical pressure CO2 (S-CO2) in constant-section circular tube, horizontal diverging tube and diverging tubes with different inclination angles under cooling conditions. The computational results indicate that compared with that of the uniform cross-section tube, the total heat transfer coefficient of the horizontal diverging tube and the 30° inclined diverging tube are increased by 32.33% and 33.12% respectively under same heat transfer area, and the pressure drop are decreased by 53.87% and 9.86%, respectively. Using comprehensive Performance Evaluation Criteria(PEC), it is found that the comprehensive performance of the horizontal diverging tube is the best. Based on the assumption that S-CO2 has“phase- transition-like” at pseudo-critical temperature Tpc, the distribution of the liquid-like film along the length of the tube is obtained, and it is found that at the same section,the thickness of the liquid-like film of the 30° diverging tube is the smallest, the liquid-like film thickness of the constant-section circular tube is the biggest. The mechanism of heat transfer enhancement is explained from the point of view of supercritical two-phase-like.
关键词
太阳能热发电 /
超临界压力CO2 /
数值模拟 /
布雷顿循环 /
传热强化 /
渐扩管
Key words
solar thermal power generation /
supercritical pressure CO2 /
numerical simulation /
Brayton cycle /
heat transfer enhancement /
diverging tube
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SU Z X, YANG L.A novel and efficient cogeneration system of waste heat recovery integrated carbon capture and dehumidification for coal-fired power plants[J]. Energy conversion and management, 2022, 255: 115358.
[2] OKASHA A, MÜLLER N, DEB K. Bi-objective optimization of transcritical CO2 heat pump systems[J]. Energy, 2022, 247: 123469.
[3] 马月婧, 潘利生, 魏小林, 等. 太阳能热发电超临界CO2布雷顿循环性能理论研究[J]. 太阳能学报, 2018, 39(5): 1255-1262.
MA Y J, PAN L S, WEI X L, et al.Theoretical investigation on performance of supercritical CO2 Brayton cycle for solar thermal power generation system[J]. Acta energiae solaris sinica, 2018, 39(5): 1255-1262.
[4] KHATOON S, KIM M H.Preliminary design and assessment of concentrated solar power plant using supercritical carbon dioxide Brayton cycles[J]. Energy conversion and management, 2022, 252: 115066.
[5] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 Brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[6] YANG Y Y, LI M X, WANG K Y, et al.Study of multi-twisted-tube gas cooler for CO2 heat pump water heaters[J]. Applied thermal engineering, 2016, 102: 204-212.
[7] HUANG C Y, CAI W H, WANG Y, et al.Review on the characteristics of flow and heat transfer in printed circuit heat exchangers[J]. Applied thermal engineering, 2019, 153: 190-205.
[8] 王军辉. 塔式太阳能热发电超临界流体流动特性与传热规律研究[D]. 西安: 西安理工大学, 2019.
WANG J H.Flow and heat transfer characteristics of supercritical fluids for tower solar thermal power generation[D]. Xi’an: Xi’an University of Technology, 2019.
[9] YOON S H, KIM J H, HWANG Y W, et al.Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International journal of refrigeration, 2003, 26(8): 857-864.
[10] LIU Z B, HE Y L, YANG Y F, et al.Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied thermal engineering, 2014, 70(1): 307-315.
[11] WANG X C, XIANG M J, HUO H J, et al.Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied thermal engineering, 2018, 141: 775-787.
[12] CABEZA L F, DE GRACIA A D, FERNáNDEZ A I, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied thermal engineering, 2017, 125: 799-810.
[13] EHSAN M M, GUAN Z Q, KLIMENKO A Y.A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and sustainable energy reviews, 2018, 92: 658-675.
[14] WANG J Y, GUAN Z Q, GURGENCI H, et al.A computationally derived heat transfer correlation for in-tube cooling turbulent supercritical CO2[J]. International journal of thermal sciences, 2019, 138: 190-205.
[15] LIU Z B, HE Y L, QU Z G, et al.Experimental study of heat transfer and pressure drop of supercritical CO2 cooled in metal foam tubes[J]. International journal of heat and mass transfer, 2015, 85: 679-693.
[16] 王开正, 徐肖肖, 刘朝, 等. 超临界CO2在螺旋管中换热特性的数值模拟[J]. 太阳能学报, 2017, 38(4): 1102-1108.
WANG K Z, XU X X, LIU C, et al.Numerical simulation of heat transfer characteristics of supercritical CO2 in helically coiled tube[J]. Acta energiae solaris sinica, 2017, 38(4): 1102-1108.
[17] BAI C, QIU Y, LENG X L, et al.Diverging/converging small channel for condensation heat transfer enhancement under different gravity conditions[J]. International communications in heat and mass transfer, 2020, 116: 104714.
[18] LI C, HAO J H, WANG X C, et al.Dual-effect evaluation of heat transfer deterioration of supercritical carbon dioxide in variable cross-section horizontal tubes under heating conditions[J]. International journal of heat and mass transfer, 2022, 183: 122103.
[19] KUMAR N, BASU D N.Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel[J]. International journal of thermal sciences, 2021, 168: 107051.
[20] DANG C B, HIHARA E.In-tube cooling heat transfer of supercritical carbon dioxide. part 1. experimental measurement[J]. International journal of refrigeration, 2004, 27(7): 736-747.
[21] XU J L, SUN E H, LI M J, et al.Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246.
[22] YUAN N, BI D P, ZHAI Y L, et al.Flow and heat transfer performance of supercritical pressure carbon dioxide in pipes with discrete double inclined ribs[J]. International journal of heat and mass transfer, 2020, 149: 119175.
[23] GUO Z Y, TAO W Q, SHAH R K.The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International journal of heat and mass transfer, 2005, 48(9): 1797-1807.
[24] SIMEONI G G, BRYK T, GORELLI F A, et al.The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nature physics, 2010, 6(7): 503-507.
[25] MAXIM F, CONTESCU C, BOILLAT P, et al.Visualization of supercritical water pseudo-boiling at Widom line crossover[J]. Nature communications, 2019, 10(1): 4114.
[26] MAXIM F, KARALIS K, BOILLAT P, et al.Thermodynamics and dynamics of supercritical water pseudo-boiling[J]. Advanced science, 2021, 8(3): 2002312.
[27] YAN C S, XU J L, ZHU B G, et al.Numerical analysis on heat transfer characteristics of supercritical CO2 in heated vertical up-flow tube[J]. Materials, 2020, 13(3): 211064804.
基金
国家自然科学基金(51675254; 51966009); “科技助力经济 2020”重点专项(SQ2020YFF0420989); 甘肃省科技计划(20YF8GA057)