基于熵权-TOPSIS的光电光热制冷系统评价与分析

王天东, 何子睿, 单晓芳, 刘广东, 邓勤犁, 任志刚

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 229-235.

PDF(2058 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2058 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 229-235. DOI: 10.19912/j.0254-0096.tynxb.2022-0676

基于熵权-TOPSIS的光电光热制冷系统评价与分析

  • 王天东1,2, 何子睿3, 单晓芳1,2, 刘广东3, 邓勤犁1,2, 任志刚1,2
作者信息 +

EVALUATION AND ANALYSIS OF PHOTOVOLTAIC AND PHOTOTHERMAL REFRIGERATION SYSTEM BASED ON ENTROPY WEIGHT-TOPSIS

  • Wang Tiandong1,2, He Zirui3, Shan Xiaofang1,2, Liu Guangdong3, Deng Qinli1,2, Ren Zhigang1,2
Author information +
文章历史 +

摘要

以三亚市某办公建筑为例,基于TRNSYS建立传统制冷系统、太阳能光电制冷系统和太阳能光热制冷系统,并对系统进行能耗模拟。然后以能源、经济和环境效益作为评价指标,使用熵权-TOPSIS法对传统制冷系统、光电制冷系统的两种不同方案、光热制冷系统进行综合评价,并对各方案进行比较。结果表明:太阳能光电制冷系统的两种不同方案的综合效益显著优于传统制冷系统;按耗电量匹配的光电制冷系统方案优于按最大安装面积匹配的系统方案;并且太阳能光电制冷系统比太阳能光热制冷系统具有更好的综合效益。

Abstract

Taking an office building in Sanya as an example,the traditional refrigeration system,solar photovoltaic refrigeration system and solar photothermal refrigeration system are established based on TRNSYS,and the energy consumption of the system is simulated.Then,with energy,economic and environmental benefits as the evaluation indicators,the entropy weight-TOPSIS method is used to comprehensively evaluate the traditional refrigeration system,two different schemes of the photoelectric refrigeration system,and the photothermal refrigeration system,and compare the schemes. The results show that the comprehensive benefits of the two different schemes of the solar photovoltaic refrigeration system are significantly better than the traditional refrigeration system,the photovoltaic refrigeration system scheme matched by power consumption is better than the system scheme matched by the maximum installation area,and the solar photovoltaic refrigeration system has better comprehensive benefits than the solar photothermal refrigeration system.

关键词

太阳能 / 制冷 / 光伏 / 光热 / 熵权-TOPSIS / 综合评价

Key words

solar / refrigeration / photovoltaic / photothermal / entropy weight-TOPSIS / comprehensive evaluation

引用本文

导出引用
王天东, 何子睿, 单晓芳, 刘广东, 邓勤犁, 任志刚. 基于熵权-TOPSIS的光电光热制冷系统评价与分析[J]. 太阳能学报. 2023, 44(9): 229-235 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0676
Wang Tiandong, He Zirui, Shan Xiaofang, Liu Guangdong, Deng Qinli, Ren Zhigang. EVALUATION AND ANALYSIS OF PHOTOVOLTAIC AND PHOTOTHERMAL REFRIGERATION SYSTEM BASED ON ENTROPY WEIGHT-TOPSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 229-235 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0676
中图分类号: TK519   

参考文献

[1] MORTADI M, EL FADAR A.Performance economic and environmental assessment of solar cooling systems under various climates[J]. Energy conversion and management, 2022, 252:114993.
[2] HE T, ZHANG X Y, WANG C H, et al.Application of solar thermal cooling system driven by low temperature heat source in China[J]. Energy procedia, 2015, 70: 454-461.
[3] CASCETTA F, LORENZO R D, NARDINI S, et al.A trnsys simulation of a solar-driven air refrigerating system for a low-temperature room of an agro-industry site in the southern part of Italy[J]. Energy procedia, 2017, 126: 329-336.
[4] 郗复缓. 光伏发电制冷系统的经济性分析[J]. 能源研究与管理, 2021(1): 128-131.
XI F H.Economic analysis of photovoltaic power generation refrigeration system[J]. Energy research and management, 2021(1): 128-131.
[5] OTANICAR T, TAYLOR R A, PHELAN P E.Prospects for solar cooling: an economic and environmental assessment[J]. Solar energy, 2012, 86(5): 1287-1299.
[6] FUMO N, BORTONE V, ZAMBRANO J C.Comparative analysis of solar thermal cooling and solar photovoltaic cooling systems[J]. Journal of solar energy engineering, 2013, 135(2): 85-90.
[7] 高毓壑, 季杰, 赵志, 等. 太阳能光伏制冷系统与其他制冷系统的能耗模拟及经济性比较[J]. 太阳能学报, 2020, 41(5): 336-344.
GAO Y H, JI J, ZHAO Z, et al.Simulation of energy consumption and economic comparison between solar PV cooling system and other cooling systems[J]. Acta energiae solaris sinica, 2020, 41(5): 336-344.
[8] KHAN M S A, BADAR A W, TALHA T, et al. Configuration based modeling and performance analysis of single effect solar absorption cooling system in TRNSYS[J]. Energy conversion and management, 2018, 157: 351-363.
[9] 周倩. 兰州地区太阳能吸收式空调冷热源系统的数值模拟研究[D]. 兰州: 兰州理工大学, 2013.
ZHOU Q.Anumerical analysis and simulation for cold and heat sources in a solar-powered absorption air conditioners[D]. Lanzhou: Lanzhou University of Technology, 2013.
[10] Department for Business Energy Industrial Strategy. Greenhouse gas reporting:conversion factors2020[EB/OL]. http://www.gov.uk/government/ publications/greenho use-gas-reporting-conversion-factors-2020.
[11] 张东, 张彬, 张瑞, 等. 基于熵权-TOPSIS的多能互补联供系统优化配置研究[J]. 华中科技大学学报(自然科学版), 2022, 50(10): 136-142.
ZHANG D, ZHANG B, ZHANG R, et al.Study of optimal allocation of multi-energy complementary cogeneration based on entropy weight-TOPSIS[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2022, 50(10): 136-142.
[12] 倪九派, 李萍, 魏朝富, 等. 基于AHP和熵权法赋权的区域土地开发整理潜力评价[J]. 农业工程学报, 2009, 25(5): 202-209.
NI J P, LI P, WEI C F, et al.Potentialities evaluation of regional land consolidation based on AHP and entropy weight method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 202-209.
[13] 李钟实. 太阳能光伏发电系统设计施工与应用[M]. 北京: 人民邮电出版社, 2012: 102-103.
LI Z S.Design, Construction and application of solar photovoltaic power generation system[M]. Beijing: Posts and Telecommunications Press, 2012: 102-103.

基金

国家“十三五”重点研发计划(2018YFD1100702-3); 海南省重大科技计划(ZDJK2021024); 武汉理工大学三亚科教园开放基金(2021KF0004)

PDF(2058 KB)

Accesses

Citation

Detail

段落导航
相关文章

/