基于特征金字塔融合高分辨率网络的光伏热斑识别

孙海蓉, 李莉, 周映杰, 周黎辉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 109-116.

PDF(1959 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1959 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 109-116. DOI: 10.19912/j.0254-0096.tynxb.2022-0684

基于特征金字塔融合高分辨率网络的光伏热斑识别

  • 孙海蓉1, 李莉1, 周映杰1, 周黎辉2
作者信息 +

PHOTOVOLTAIC HOT SPOT RECOGNITION BASED ON FEATURE PYRAMID FUSION HIGH RESOLUTION NETWORK

  • Sun Hairong1, Li Li1, Zhou Yingjie1, Zhou Lihui2
Author information +
文章历史 +

摘要

针对光伏热斑识别算法中存在的深层网络参数运算复杂、梯度信息易消失和模型退化准确率下降等问题,提出一种基于特征金字塔融合高分辨率网络的光伏热斑识别检测算法。首先,该算法搭建一种多分辨率子网并行连接的网络模型,解决深层网络热斑细节信息丢失、特征冗余的难题。其次,引入特征金字塔的多尺度融合模块,跨层连接深浅层不同尺度特征图,解决特征语义的鸿沟、提高模型识别精度。实验结果表明:所提出的算法在光伏红外热斑图像数据集上的分类效果优于经典的深度卷积神经网络算法,准确率可达97.2%,可实现高精度高分辨率的热斑检测识别。

Abstract

Aiming at the problems existing in the photovoltaic hot spot recognition algorithm, such as the complex calculation of deep network parameters, the easy disappearance of gradient information and the reduced accuracy of model degradation, a photovoltaic hot spot identification and detection algorithm based on feature pyramid fusion high-resolution network is proposed. Firstly, a network model with parallel connection of multi-resolution subnetworks is build in this algorithm, which solves the problems of loss of detailed information and redundant features of hot spots in deep networks. Secondly, the multi-scale fusion module of the feature pyramid is introduced, which connects the feature maps of different scales across layers, solves the feature semantic gap, and improves the accuracy of model recognition. The experimental results show that the classification effect of the proposed algorithm on the photovoltaic infrared hot spot image dataset is better than the classical deep convolutional neural network algorithm, and the accuracy rate can reach 97.2%. The algorithm realizes high-precision and high-resolution hot spot detection and identification.

关键词

光伏效应 / 特征提取 / 图像分类 / 高分辨率网络 / 热斑

Key words

photovoltaic effect / feature extraction / image classification / high-resolution network / hot spot

引用本文

导出引用
孙海蓉, 李莉, 周映杰, 周黎辉. 基于特征金字塔融合高分辨率网络的光伏热斑识别[J]. 太阳能学报. 2023, 44(9): 109-116 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0684
Sun Hairong, Li Li, Zhou Yingjie, Zhou Lihui. PHOTOVOLTAIC HOT SPOT RECOGNITION BASED ON FEATURE PYRAMID FUSION HIGH RESOLUTION NETWORK[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 109-116 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0684
中图分类号: TP183    TM914.4   

参考文献

[1] 唐圣学, 邢玥, 陈丽, 等. 太阳电池组串热斑防治策略研究[J]. 太阳能学报, 2022, 43(4): 226-235.
TANG S X, XING Y, CHEN L, et al.Study on suppressing strategy of hot spot in solar cell series[J]. Acta energiae solaris sinica, 2022, 43(4): 226-235.
[2] 蔡洁聪, 吕洪坤, 朱凌云, 等. 光伏发电站热斑检测技术综述[J]. 电源技术, 2021, 45(5): 683-685.
CAI J C, LYU H K, ZHU L Y, et al.Review of hot spot detection technology in photovoltaic power station[J]. Chinese journal of power sources, 2021, 45(5): 683-685.
[3] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
ZHANG K, FENG X H, GUO Y R, et al.Overview of deep convolutional neural networks for image classification[J]. Journal of image and graphics, 2021, 26(10): 2305-2325.
[4] 盖荣丽, 蔡建荣, 王诗宇, 等. 卷积神经网络在图像识别中的应用研究综述[J]. 小型微型计算机系统, 2021, 42(9): 1980-1984.
GAI R L,CAI J R, WANG S Y, et al.Research review on image recognition based on deep learning[J]. Journal of Chinese computer systems , 2021, 42(9): 1980-1984.
[5] 王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27(6): 517-523.
WANG X B, LI J, YAO M H, et al.Solar cells surface defects detection based on deep learning[J]. Pattern recognition and artificial intelligence, 2014, 27(6): 517-523.
[6] 周颖, 毛立, 张燕, 等. 改进CNN的太阳电池缺陷识别方法研究[J]. 太阳能学报, 2020, 41(12): 69-76.
ZHOU Y, MAO L, ZHANG Y,et al.Research on defect detection and classification for solar cells based on improved convolutional neural network[J]. Acta energiae solaris sinica, 2020, 41(12): 69-76.
[7] 刘云鹏, 张喆, 裴少通, 等. 基于深度学习的红外图像中劣化绝缘子片的分割方法[J]. 电测与仪表, 2022, 59(9): 63-68, 118.
LIU Y P, ZHANG Z, PEI S T, et al.Faulty insulator segmentation method in infrared image based on deep learning[J]. Electrical measurement & instrumentation, 2022, 59(9): 63-68, 118.
[8] SUN K, XIAO B, LIU D, et al.Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, 2019.
[9] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016.
[10] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227.
CHEN K Q, ZHU Z L, DENG X M, et al.Deep learning for multi-scale object detection: a survey[J]. Journal of software, 2021, 32(4): 1201-1227.
[11] LIN T Y, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017.
[12] 张雪松, 庄严, 闫飞, 等. 基于迁移学习的类别级物体识别与检测研究与进展[J]. 自动化学报, 2019, 45(7): 1224-1243.
ZHANG X S, ZHUANG Y, YAN F, et al.Status and development of transfer learning based category-level object recognition and detection[J]. Acta automatica sinica, 2019, 45(7): 1224-1243.
[13] 侯丽. 基于AdaBoost和深度学习的红外乳腺癌检测方法研究[D]. 武汉: 华中科技大学, 2017.
HOU L.Detection of breast cancer with infrared thermal images based on AdaBoost and deep learning[D]. Wuhan: Huazhong University of Science and Technology, 2017.

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/