亚热带地区垂直绿化冠层太阳辐射特性研究

赵城, 张磊, 杨媛琴, 张玉, 刘明欣, 赵立华

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 280-285.

PDF(1780 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1780 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 280-285. DOI: 10.19912/j.0254-0096.tynxb.2022-0689

亚热带地区垂直绿化冠层太阳辐射特性研究

  • 赵城1, 张磊1, 杨媛琴1, 张玉2, 刘明欣1, 赵立华1
作者信息 +

RESEARCH ON SOLAR RADIATION CHARACTERISTICS OF VERTICAL GREENING CANOPY IN SUBTROPICAL REGIONS

  • Zhao Cheng1, Zhang Lei1, Yang Yuanqin1, Zhang Yu2, Liu Mingxin1, Zhao Lihua1
Author information +
文章历史 +

摘要

选取亚热带地区常见植物搭建垂直绿化冠层太阳辐射特性观测平台。修正基于Lambert-Beer定律的冠层太阳辐射透过率模型。使用误差分析指标检验模型的计算精度。对模型的输入参数进行敏感性分析,发现叶面积指数是影响冠层太阳辐射透过率的重要参数。因此,对冠层全年的叶面积指数进行观测,计算全年不同朝向垂直绿化冠层的太阳辐射透过率,结果表明,垂直绿化冠层可拦截超过80%入射到建筑表面的太阳辐射,具有良好的遮阳效果。

Abstract

A platform for observing the solar radiation characteristics of vertical greening canopies was established with plants commonly used in subtropical regions. The model of canopy solar radiation transmittance based on the Lambert-Beer law was modified. The performance of the modified model was examined using error analysis indicators. Through a sensitivity analysis of the input parameters, it was found that the leaf area index (LAI) is a critical parameter affecting the canopy solar radiation transmittance. Therefore, the annual variations of the LAIs of the plants were observed. Then, the solar radiation transmittances of canopies with different orientations were determined using the modified model. The results indicated that the vertical greening canopies intercept over 80% of incident solar radiation.

关键词

被动太阳能建筑 / 太阳辐射 / 敏感性分析 / 光学特性 / 垂直绿化 / 冠层透过率

Key words

passive solar buildings / solar radiation / sensitivity analysis / optical properties / vertical greening / canopy transmittance

引用本文

导出引用
赵城, 张磊, 杨媛琴, 张玉, 刘明欣, 赵立华. 亚热带地区垂直绿化冠层太阳辐射特性研究[J]. 太阳能学报. 2023, 44(9): 280-285 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0689
Zhao Cheng, Zhang Lei, Yang Yuanqin, Zhang Yu, Liu Mingxin, Zhao Lihua. RESEARCH ON SOLAR RADIATION CHARACTERISTICS OF VERTICAL GREENING CANOPY IN SUBTROPICAL REGIONS[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 280-285 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0689
中图分类号: TU111.4   

参考文献

[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG Z Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 杨婧, 刘艳峰, 陈耀文, 等. 用于被动太阳能采暖适用技术选择的气候分区研究[J]. 太阳能学报, 2021, 42(6): 234-242.
YANG J, LIU Y F, CHEN Y W, et al.Research of climate regions division for applicable passive solar heating technology selection[J]. Acta energiae solaris sinica, 2021, 42(6): 234-242.
[3] 李元哲. 拉萨市住宅利用太阳能采暖的可行性[J]. 太阳能, 2004(4): 36-38.
LI Y Z.Feasibility of solar heating for residential building in Lhasa[J]. Solar energy, 2004(4): 36-38.
[4] 宋金昭, 杨建平, 杭伟. 被动式太阳能建筑节能经济优化研究[J]. 太阳能学报, 2012, 33(8): 1425-1429.
SONG J Z, YANG J P, HANG W.Reasearch on the economy optimizing of passive solar building[J]. Acta energiae solaris sinica, 2012, 33(8): 1425-1429.
[5] MEDL A, STANGL R, FLORINETH F.Vertical greening systems-a review on recent technologies and research advancement[J]. Building and environment, 2017, 125: 227-239.
[6] PENG L L H, JIANG Z D, YANG X S, et al. Cooling effects of block-scale facade greening and their relationship with urban form[J]. Building and environment, 2020, 169: 106552.
[7] LEE L S H, JIM C Y. Thermal-irradiance behaviours of subtropical intensive green roof in winter and landscape-soil design implications[J]. Energy and buildings, 2020, 209: 109692.
[8] CHEN Q Y, DING Q, LIU X H.Establishment and validation of a solar radiation model for a living wall system[J]. Energy and buildings, 2019, 195: 105-115.
[9] ZHAO W G, QUALLS R J.A multiple-layer canopy scattering model to simulate shortwave radiation distribution within a homogeneous plant canopy[J]. Water resources research, 2005, 41(8): 1-16.
[10] IP K, LAM M, MILLER A.Shading performance of a vertical deciduous climbing plant canopy[J]. Building and environment, 2010, 45(1): 81-88.
[11] CONVERTINO F, VOX G, SCHETTINI E.Thermal barrier effect of green façades: long-wave infrared radiative energy transfer modelling[J]. Building and environment, 2020, 177: 106875.
[12] WIDIASTUTI R, ZAINI J, CAESARENDRA W, et al.Thermal insulation effect of green façades based on calculation of heat transfer and long wave infrared radiative exchange[J]. Measurement, 2022, 188: 110555.
[13] RAJI B, TENPIERIK M J, VAN DEN DOBBELSTEEN A. The impact of greening systems on building energy performance: a literature review[J]. Renewable and sustainable energy reviews, 2015, 45: 610-623.
[14] PAPADOPOULOS A P, PARARAJASINGHAM S.The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): a review[J]. Scientia horticulturae, 1997, 69(1/2): 1-29.
[15] DEL BARRIO E P. Analysis of the green roofs cooling potential in buildings[J]. Energy and buildings, 1998, 27(2): 179-193.
[16] LI X C, NIU K.Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law[J]. Renewable energy, 2018, 123: 634-638.
[17] CAMPBELL G S.Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions[J]. Agricultural and forest meteorology, 1990, 49(3): 173-176.
[18] ROGERS C, CHEN J M, CROFT H, et al. Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology[J]. Agricultural and forest meteorology, 2021, 304/305: 108407.
[19] KONTOLEON K J, EUMORFOPOULOU E A.The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone[J]. Building and environment, 2010, 45(5): 1287-1303.
[20] CONVERTINO F, VOX G, SCHETTINI E.Evaluation of the cooling effect provided by a green façade as nature-based system for buildings[J]. Building and environment, 2021, 203: 108099.

基金

国家重点研发计划(2019YFE0124500); 国家自然科学基金(52178075; 51878288)

PDF(1780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/