以GeSe为光吸收层的薄膜太阳电池模拟优化研究

韩莹健, 吴海峰, 王丹丹, 邢美波, 李子睿, 王瑞祥

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 66-71.

PDF(2065 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2065 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 66-71. DOI: 10.19912/j.0254-0096.tynxb.2022-0690

以GeSe为光吸收层的薄膜太阳电池模拟优化研究

  • 韩莹健1, 吴海峰1, 王丹丹2, 邢美波1, 李子睿1, 王瑞祥1
作者信息 +

SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSe AS ABSORPTION LAYER

  • Han Yingjian1, Wu Haifeng1, Wang Dandan2, Xing Meibo1, Li Zirui1, Wang Ruixiang1
Author information +
文章历史 +

摘要

针对GeSe薄膜作为吸收层的薄膜太阳电池,利用Scaps-1D太阳电池模拟软件研究电池的吸收层参数对光电性能的影响,以最大光电转化效率(PCE)为优化目标,确定吸收层厚度、缺陷态密度、掺杂浓度以及电子亲和势等参数,获得0.77 V的开路电压,38.55 mA/cm2的短路电流,85.21%的填充因子以及25.3%的光电转化效率。

Abstract

In this paper, for thin-film solar cells with GeSe thin film as the absorber layer, the effects of the absorber layer parameters on the photovoltaic performance were studied by using Scaps-1D solar cell simulation software. Thickness, defect state density, doping density and electron affinity parameters are used to obtain open-circuit voltage of 0.77 V, short-circuit current of 38.55 mA/cm2, fill factor of 85.21% and photoelectric conversion efficiency of 25.3%.

关键词

薄膜太阳电池 / 太阳电池效率 / 数值模拟 / GeSe吸收层 / 参数优化

Key words

thin film solar cells / solar cell efficiency / direct numerical simulation / GeSe absorber layer / parameter optimization

引用本文

导出引用
韩莹健, 吴海峰, 王丹丹, 邢美波, 李子睿, 王瑞祥. 以GeSe为光吸收层的薄膜太阳电池模拟优化研究[J]. 太阳能学报. 2023, 44(9): 66-71 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0690
Han Yingjian, Wu Haifeng, Wang Dandan, Xing Meibo, Li Zirui, Wang Ruixiang. SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSe AS ABSORPTION LAYER[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 66-71 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0690
中图分类号: TM914.4+2   

参考文献

[1] XUE D J, LIU S C, DAI C M, et al.GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation[J]. Journal of the American Chemical Society, 2017, 139(2): 958-965.
[2] LIU S C, MI Y, XUE D J, et al.Investigation of physical and electronic properties of GeSe for photovoltaic applications[J]. Advanced electronic materials, 2017, 3(11): 1700141.
[3] CHEN B W, RUAN Y R, LI J M, et al.Highly oriented GeSe thin film: self-assembly growth via the sandwiching post-annealing treatment and its solar cell performance[J]. Nanoscale, 2019, 11(9): 3968-3978.
[4] LIU S C, DAI C M, MIN Y M, et al.An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature communications, 2021, 12: 670.
[5] 王龙祥, 邢美波, 王瑞祥. 基于量子点太阳电池的高效光学利用策略[J]. 太阳能学报, 2023, 44(2): 436-444.
WANG L X, XING M B, WANG R X.Efficient light utilization strategies based on quantum dot solar cells[J]. Acta energiae solaris sinica, 2023, 44(2): 436-444.
[6] 程雪梅, 孟凡英, 汪建强, 等. p型晶体硅异质结太阳电池光电特性模拟研究[J]. 太阳能学报, 2012, 33(9): 1474-1479.
CHENG X M, MENG F Y, WANG J Q, et al.Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta energiae solaris sinica, 2012, 33(9): 1474-1479.
[7] AL-HATTAB M, MOUDOU L, KHENFOUCH M, et al.Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software[J]. Solar energy, 2021, 227: 13-22.
[8] IHALANE E H, ATOURKI L, KIROU H, et al.Numerical study of thin films CIGS bilayer solar cells using SCAPS[J]. Materials today: proceedings, 2016, 3(7): 2570-2577.
[9] OUSLIMANE T, ET-TAYA L, ELMAIMOUNI L, et al.Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material[J]. Heliyon, 2021, 7(3): e06379.
[10] ALZOUBI T, MOUSTAFA M.Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS[J]. International journal of smart grid and clean energy, 2019, 8: 291-298.
[11] KANOUN A A, KANOUN M B, MERAD A E, et al.Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach[J]. Solar energy, 2019, 182: 237-244.
[12] 邢美波, 丁宪喆, 景栋梁, 等. 一步法制备高效TiO2/PbS异质结量子点太阳电池[J]. 太阳能学报, 2022, 43(12): 19-24.
XING M B, DING X Z, JING D L, et al.Preparation of high efficiency TiO2/PbS quantum dot heterojunction solar cells by single-step method[J]. Acta energiae solaris sinica, 2022, 43(12): 19-24.
[13] CHELVANATHAN P, HOSSAIN M I, AMIN N.Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS[J]. Current applied physics, 2010, 10(3): S387-S391.
[14] MUKHOPADHYAY K, FERMI H I P, JOSEPH P J. Thickness optimization of CdS/ZnO hybrid buffer layer in CZTSe thin film solar cells using SCAPS simulation program[J]. Materials research innovations, 2019, 23(6): 319-329.
[15] MOSTEFAOUI M, MAZARI H, KHELIFI S, et al.Simulation of high efficiency CIGS solar cells with SCAPS-1D software[J]. Energy procedia, 2015, 74: 736-744.
[16] HOSSAIN A, HASAN M M, RAHMAN M S, et al.Fully lead-free all perovskite tandem solar cell with improved efficiency: device simulation using SCAPS-1D[C]//2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 2020: 1221-1224.
[17] ABDELAZIZ S, ZEKRY A, SHAKER A, et al.Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation[J]. Optical materials, 2020, 101: 109738.
[18] DU H J, WANG W C, ZHU J Z.Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency[J]. Chinese physics B, 2016, 25(10): 108802.
[19] CHAKRABORTY D, SOMAY S, PANDEY S K.Numerical analysis of a novel HTL-free perovskite solar cell with gradient doping and a WS2 interlayer[J]. Micro and nanostructures, 2022, 163: 107149.
[20] KEMP K W, LABELLE A J, THON S M, et al.Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots[J]. Advanced energy materials, 2013, 3(7): 917-922.
[21] HAQUE M D, ALI M H, RAHMAN M F, et al.Numerical analysis for the efficiency enhancement of MoS2 solar cell: a simulation approach by SCAPS-1D[J]. Optical materials, 2022, 131: 112678.

基金

北京建筑大学青年教师科研能力提升计划(X21012); 北京建筑大学研究生教育教学质量提升项目(J2022026)

PDF(2065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/