槽式太阳能集热管的弯曲变形会造成聚光能量的溢出损失,需要进行测量和分析。提出基于无人机摄影的槽式太阳能集热管弯曲测量方法:采用无人机搭载高分辨可见光相机,实现对槽式太阳能集热管的图像采集;基于边缘检测算法对集热管图像进行处理,最终获得集热管的弯曲变形量。基于光线追迹理论建立槽式聚光器聚光过程数学模型,推导弯曲集热管的溢出损失计算公式。选取3种不同弯曲量的集热管进行测量实验,测得的最大弯曲量分别为1.23、7.75、18.79 mm,平均测量误差为±0.75 mm,计算对应的溢出损失分别为0.02%、0.57%、3.72%,结果表明:集热管弯曲量较大时,会造成较大的溢出损失。
Abstract
The bending of the collector tube in the solar trough thermal power plant will cause the spillage loss of the concentrated energy, which needs to be measured and analyzed. The bending measurement method of the collector tube based on the UAV photography is proposed. The UAV is equipped with high-resolution visible camera to realize the images acquisition of the collector tubes. Based on the edge detection algorithm, the images of the collector tubes are processed, and finally the bending value of the collector tubes is obtained. Based on the ray tracing theory, the mathematical model of the concentrating process of the solar trough concentrator is established, and the calculation formulas of the spillage loss of the bended collector tube is deduced. Three kinds of collector tubes with different bending values are selected for measurement experiments. The measured maximum bending values are 1.23, 7.75, 18.79 mm respectively, the average measurement error is ±0.75 mm, and the corresponding spillage losses are 0.02%, 0.57%, 3.72% respectively. The results show that when the collector tube bending amount is larger, it will cause larger overflow loss.
关键词
太阳能热发电 /
槽式太阳能集热管 /
光学效率 /
光线追迹
Key words
solar thermal power generation /
trough solar collector /
optical efficiency /
ray tracing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡振广, 金宗勇. 能源转型战略背景下中国太阳能热发电面临的机遇与挑战[J]. 太阳能, 2019(11): 11-17, 20.
HU Z G, JIN Z Y.Opportunities and challenges for China’s solar thermal power generation under the background of energy transformation strategy[J]. Solar energy, 2019(11): 11-17, 20.
[2] BOUKELIA T E, MECIBAH M S.Parabolic trough solar thermal power plant: potential, and projects development in Algeria[J]. Renewable and sustainable energy reviews, 2013, 21: 288-297.
[3] 程兴利. 槽式光热电厂集热管弯曲和破损分析[J]. 设备管理与维修, 2021(9): 46-47.
CHENG X L.Bending and damage analysis of collector tube in trough photo thermal power plant[J]. Plant maintenance engineering, 2021(9): 46-47.
[4] MESAS-CARRASCOSA F J, VERDÚ SANTANO D, PÉRES PORRAS F, et al. The development of an open hardware and software system onboard unmanned aerial vehicles to monitor concentrated solar power plants[J]. Sensors, 2017, 17(6): 1329.
[5] PRAHL C, STANICKI B, HILGERT C, et al.Airborne shape measurement of parabolic trough collector fields[J]. Solar energy, 2013, 91: 68-78.
[6] PRAHL C, RÖGER M, STANICKI B, et al. Absorber tube displacement in parabolic trough collectors-a review and presentation of an airborne measurement approach[J]. Solar energy, 2017, 157: 692-706.
[7] 任兰旭. 太阳能热发电站槽式聚光器面形检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2015: 23-26.
REN L X.Research on surface shape detection technology of trough concentrator in solar thermal power station[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Science, 2015: 23-26.
[8] 肖君. 太阳能热发电曲面反光镜面形检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2015: 33-35.
XIAO J.Research on surface shape detection technology of curved mirror for solar solar thermal power generation[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Science, 2015: 33-35.
[9] 杨妮, 燕必希, 董明利, 等. 跟踪与装配误差对PTC截断因子的影响分析[J]. 可再生能源, 2016, 34(2): 159-165.
YANG N, YAN B X, DONG M L, et al.Influence analysis of tracking and assembly error on PTC intercept factor[J]. Renewable energy resources, 2016, 34(2): 159-165.
[10] LÜPFERT E, POTTLER K, ULMER S, et al. Parabolic trough optical performance analysis techniques[J]. Journal of solar energy engineering, 2007, 81, 129(2): 147-152.
[11] GB/T 34334—2017, 光热玻璃反射镜面形测试方法[S].
GB/T 34334—2017, Test method of mirror shape for solar collector[S].
基金
福建省自然科学基金面上项目(2019J01876)