新型纸浆污泥生物炭基催化剂的制备及其催化合成生物柴油研究

赵丹丹, 赵伟, 单锐, 陈德珍, 袁浩然, 陈勇

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 432-439.

PDF(1874 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1874 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 432-439. DOI: 10.19912/j.0254-0096.tynxb.2022-0722

新型纸浆污泥生物炭基催化剂的制备及其催化合成生物柴油研究

  • 赵丹丹1,2, 赵伟3, 单锐2, 陈德珍1, 袁浩然1,2, 陈勇1,2
作者信息 +

STUDY ON PREPARATION OF MODIFIED WASTE PAPER PULP BIOCHAR-BASED CATALYST AND ITS CATALYTIC APPLICATION FOR BIODIESEL PRODUCTION

  • Zhao Dandan1,2, Zhao Wei3, Shan Rui2, Chen Dezhen1, Yuan Haoran1,2, Chen Yong1,2
Author information +
文章历史 +

摘要

以纸浆污泥生物炭为载体制备固体碱催化剂,并将其应用于生物柴油的制备。催化剂的物理化学性质通过热重分析(TG)、扫描电子显微镜及X射线能谱分析(SEM-EDS)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、N2吸附/脱附和CO2-TPD进行表征。结果表明:由于30K/PPSB-600催化剂的总碱度最高,具有非常好的的催化性能(生物柴油最大产率为98.5%)。此外,对催化剂的稳定性和利用周期性进行多次实验。通过8次回收实验后,新催化剂仍具有较高的催化性能(生物柴油产率为80%),其中少量失去催化活性的原因是K+的流失。

Abstract

In this paper, pulp & paper sludge biochar is used as a carrier to prepare a solid base catalyst and applied to the preparation of biodiesel. The physicochemical properties of the catalyst were analyzed by thermogravimetric analysis (TGA), scanning electron microscope & energy dispersive spectrometer (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption/desorption and CO2-TPD for characterization. The results show that 30K/PPSB-600 has the highest total alkalinity, and it has excellent catalytic activity (maximum biodiesel yield is 98.5%). In addition, the stability and reusability of the catalyst were also examined. After 8 times of repeated use, the catalyst still has high catalytic activity (biodiesel yield is 80%). The small amount of catalyst deactivation is mainly due to the loss of K+ ions.

关键词

生物柴油 / 酯交换 / 污泥 / 生物炭

Key words

biodiesel / transesterification / sludge / biochar

引用本文

导出引用
赵丹丹, 赵伟, 单锐, 陈德珍, 袁浩然, 陈勇. 新型纸浆污泥生物炭基催化剂的制备及其催化合成生物柴油研究[J]. 太阳能学报. 2023, 44(9): 432-439 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0722
Zhao Dandan, Zhao Wei, Shan Rui, Chen Dezhen, Yuan Haoran, Chen Yong. STUDY ON PREPARATION OF MODIFIED WASTE PAPER PULP BIOCHAR-BASED CATALYST AND ITS CATALYTIC APPLICATION FOR BIODIESEL PRODUCTION[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 432-439 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0722
中图分类号: X705   

参考文献

[1] AYOOB A K, FADHIL A B.Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils[J]. Fuel, 2020, 264: 116754.
[2] 仇亿, 程军, 张泽, 等. 氧化石墨烯固体酸催化湿藻油制生物柴油[J]. 太阳能学报, 2021, 42(4): 40-45.
QIU Y, CHENG J, ZHANG Z, et al.Biodiesel production from wet microalgae using graphene oxide as solid acid catalyst[J]. Acta energiae solaris sinica, 2021, 42(4): 40-45.
[3] 朱芬芬, 胡博, 韩媚玲, 等. 金属盐$\left(\mathrm{SO}_4^{2-} / \mathrm{Cl}^{-}\right)$固体酸催化剂在污泥制生物柴油中的应用[J]. 中国环境科学, 2021, 41(9): 4176-4183.
ZHU F F, HU B, HAN M L, et al.Application of modified metal salt hydrates containing $\left(\mathrm{SO}_4^{2-} / \mathrm{Cl}^{-}\right)$ in the production of biodiesel from sewage sludge[J]. China environmental science, 2021, 41(9): 4176-4183.
[4] TAMJIDI S, ESMAEILI H, MOGHADAS B K.Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: a review study[J]. Journal of cleaner production, 2021, 305: 127200.
[5] CHAMKALANI A, ZENDEHBOUDI S, REZAEI N, et al.A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects[J]. Renewable and sustainable energy reviews, 2020, 134: 110143.
[6] ARORA A, SINGH V.Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: process design and techno-economic analysis[J]. Applied energy, 2020, 280: 115933.
[7] BASTOS R R C, DA LUZ CORRÊA A P, DA LUZ P T S, et al. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste[J]. Energy conversion and management, 2020, 205: 112457.
[8] NATH B, KALITA P, DAS B, et al.Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel[J]. Renewable energy, 2020, 151: 295-310.
[9] SEFFATI K, ESMAEILI H, HONARVAR B, et al.AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat[J]. Renewable energy, 2020, 147: 25-34.
[10] OREGE J I, ODERINDE O, KIFLE G A, et al.Recent advances in heterogeneous catalysis for green biodiesel production by transesterification[J]. Energy conversion and management, 2022, 258:115406.
[11] BORA A P, DHAWANE S H, ANUPAM K, et al.Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst[J]. Renewable energy, 2018, 121: 195-204.
[12] BENNETT J A, WILSON K, LEE A F.Catalytic applications of waste derived materials[J]. Journal of materials chemistry A, 2016, 4(10): 3617-3637.
[13] MILADINOVIĆ M R, ZDUJIĆ M V, VELJOVIĆ D N, et al.Valorization of walnut shell ash as a catalyst for biodiesel production[J]. Renewable energy, 2020, 147: 1033-1043.
[14] JUNG S, JUNG J M, TSANG Y F, et al.Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification[J]. Energy, 2022, 238: 121700.
[15] REZANIA S, MAHDINIA S, ORYANI B, et al.Biodiesel production from wild mustard (Sinapis arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles[J]. Fuel, 2022, 307: 121759.
[16] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. A review of biochars’potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental pollution, 2011, 159(12): 3269-3282.
[17] CHA J S, PARK S H, JUNG S C, et al.Production and utilization of biochar: a review[J]. Journal of industrial and engineering chemistry, 2016, 40: 1-15.
[18] 严军华, 王舒笑, 袁浩然, 等. 新型花生壳生物炭基催化剂催化酯交换反应[J]. 太阳能学报, 2020, 41(4): 257-263.
YAN J H, WANG S X, YUAN H R, et al.Novel peanut shell biochar supported catalyst for transesterification reaction[J]. Acta energiae solaris sinica, 2020, 41(4): 257-263.
[19] KIM M, KIM H B, JUNG S, et al.Simultaneous productions of biodiesel and biochar from krill[J]. Journal of cleaner production, 2022, 335: 130296.
[20] JUNG J M, LEE S R, LEE J, et al.Biodiesel synthesis using chicken manure biochar and waste cooking oil[J]. Bioresource technology, 2017, 244: 810-815.
[21] WANG S X, SHAN R, WANG Y Z, et al.Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production[J]. Renewable energy, 2019, 130: 41-49.
[22] QUAH R V, TAN Y H, MUBARAK N M, et al.Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation[J]. Waste management, 2020, 118: 626-636.
[23] LIN Y Q, LIANG J J, ZENG C, et al.Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols[J]. Renewable energy, 2017, 108: 108-115.
[24] NAICKER J E, GOVINDEN R, LEKHA P, et al.Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: assessing pretreatment methods for enhanced hydrolysis[J]. Journal of environmental management, 2020, 270: 110914.
[25] WANG H L, LI Z, TAK J K, et al.Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste[J]. Carbon, 2013, 57: 317-328.
[26] LUKIC I, KRSTIC J, JOVANOVIC D, et al.Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil[J]. Bioresource technology, 2009, 100(20): 4690-4696.
[27] JUNIOR E G S, JUSTO O R, PEREZ V H, et al. Biodiesel synthesis using a novel monolithic catalyst with magnetic properties (K2CO3/γ-Al2O3/Sepiolite/γ-Fe2O3) by ethanolic route[J]. Fuel, 2020, 271: 117650.
[28] JOORASTY M, HEMMATI A, RAHBAR-KELISHAMI A.NaOH/clinoptilolite-Fe3O4 as a novel magnetic catalyst for producing biodiesel from Amygdalus scoparia oil: optimization and kinetic study[J]. Fuel, 2021, 303: 121305.
[29] LI X F, ZUO Y, ZHANG Y, et al.In situ preparation of K2CO3 supported Kraft lignin activated carbon as solid base catalyst for biodiesel production[J]. Fuel, 2013, 113: 435-442.
[30] CAO Y, DHAHAD H A, ESMAEILI H, et al.MgO@CNT@K2CO3 as a superior catalyst for biodiesel production from waste edible oil using two-step transesterification process[J]. Process safety and environmental protection, 2022, 161: 136-146.
[31] FOROUTAN R, MOHAMMADI R, RAZEGHI J, et al.Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst[J]. Renewable energy, 2021, 168: 1207-1216.
[32] BOEY P L, MANIAM G P, HAMID S A, et al.Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: optimization using response surface methodology[J]. Fuel, 2011, 90(7): 2353-2358.
[33] CHAKRABORTY R, ROYCHOWDHURY D. Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification[J]. Chemical engineering journal, 2013, 215-216: 491-499.
[34] THITSARTARN W, KAWI S.An active and stable CaO-CeO2 catalyst for transesterification of oil to biodiesel[J]. Green chemistry, 2011, 13(12): 3423-3430.
[35] OBADIAH A, SWAROOPA G A, KUMAR S V, et al.Biodiesel production from palm oil using calcined waste animal bone as catalyst[J]. Bioresource technology, 2012, 116: 512-516.
[36] DEHKHODA A M, ELLIS N.Biochar-based catalyst for simultaneous reactions of esterification and transesterification[J]. Catalysis today, 2013, 207: 86-92.
[37] SHU Q, GAO J X, NAWAZ Z, et al.Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst[J]. Applied energy, 2010, 87(8): 2589-2596.
[38] SHAN R, SHI J F, YAN B B, et al.Transesterification of palm oil to fatty acids methyl ester using K2CO3/palygorskite catalyst[J]. Energy conversion and management, 2016, 116: 142-149.
[39] LIU H, SU L Y, LIU F F, et al.Cinder supported K2CO3 as catalyst for biodiesel production[J]. Applied catalysis B: environmental, 2011, 106(3-4): 550-558.
[40] CHUAH L F, KLEMEŠ J J, YUSUP S, et al.A review of cleaner intensification technologies in biodiesel production[J]. Journal of cleaner production, 2017, 146: 181-193.
[41] WANG S, HAO P F, LI S X, et al.Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by calcined silicates[J]. Applied catalysis A: general, 2017, 542: 174-181.
[42] FADHIL A B, AZIZ A M, ALTAMER M H.Potassium acetate supported on activated carbon for transesterification of new non-edible oil, bitter almond oil[J]. Fuel, 2016, 170: 130-140.
[43] CHEN G Y, SHAN R, SHI J F, et al.Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts[J]. Energy conversion and management, 2015, 98: 463-469.
[44] BAROUTIAN S, AROUA M K, RAMAN A A A, et al. Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil[J]. Fuel processing technology, 2010, 91(11): 1378-1385.
[45] SINGH V, SHARMA Y C.Low cost guinea fowl bone derived recyclable heterogeneous catalyst for microwave assisted transesterification of Annona squamosa L. seed oil[J]. Energy conversion and management, 2017, 138: 627-637.

基金

国家重点研发计划(2020YFC1908900); 广东省科技计划(2021A1515012263); 广州市科技计划项目(202002030365); “扬帆计划”引进创新创业团队项目(2017YT05N093)

PDF(1874 KB)

Accesses

Citation

Detail

段落导航
相关文章

/