光伏支架螺旋桩斜向拉拔承载特性试验研究

胡伟, 杨瑶, 刘顺凯, 林志, 吴秋红, 黄勇祥

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 50-61.

PDF(2368 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2368 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 50-61. DOI: 10.19912/j.0254-0096.tynxb.2022-0729

光伏支架螺旋桩斜向拉拔承载特性试验研究

  • 胡伟1,2, 杨瑶2, 刘顺凯2, 林志2, 吴秋红3, 黄勇祥4
作者信息 +

EXPERIMENT STUDY ON INCLINED PULLOUT BEARING CHARACTERISTIC OF SCREW ANCHOR PILE OF PHOTOVOLTAIC BRACKET

  • Hu Wei1,2, Yang Yao2, Liu Shunkai2, Lin Zhi2, Wu Qiuhong3, Huang Yongxiang4
Author information +
文章历史 +

摘要

针对光伏支架螺旋桩斜向荷载作用下承载特性认识不足,在砂土中开展大尺寸单锚片螺旋桩斜向拉拔载荷试验,研究荷载角度、埋深比对承载特性的影响规律,探究锚片表面的土压力强度分布变化规律,分析斜向拉拔承载控制机理。研究表明:1)荷载位移曲线一般表现为硬化型,荷载角度相同时,埋深比越大,拉拔极限荷载与相应位移均越大。埋深比相同时,荷载角度增加,曲线更显陡峭,极限荷载增大,极限位移则减小。2)分解后的荷载-水平位移曲线和荷载-竖向位移曲线特征差异显著,前者曲线完整、非线性发展充分。除竖向拉拔外,其他拉拔角度下竖向极限位移均远小于水平极限位移。3)斜向拉拔承载力TU(a)与对应埋深比竖向拉拔承载力Tu(90°)之比与荷载角度之间具有很好的线性关系。4)锚片上的土压力强度均受两种锚土相互作用机制共同影响,最大土压力强度系数与埋深比和土体内摩擦角有关,可达被动土压力强度系数的近两倍。5)荷载角度[0°,65°],螺旋桩斜向拉拔承载性状由水平方向控制,在[65°,90°]则由竖直方向控制。斜向荷载竖向分量可提高螺旋桩水平方向的承载力,但在设计判别时可将其视为安全储备不予考虑。

Abstract

In view of the insufficient understanding of the bearing characteristic of screw anchor pile of photovoltaic bracket under inclined loading, inclined pullout test of large size screw anchor pile with single blade is carried out in sand. The study focuses on the influence regulation of load angle and buried depth ratio on bearing characteristic, the variation of soil pressure distribution on the surface of anchor blade, and the inclined pullout bearing control mechanism. The main conclusions are as follows: (1) The load-displacement curves are generally hardening type, with the same loading angle, the greater the buried depth ratio, the greater the pullout limit load and the corresponding displacement; with the same buried depth ratio, the curve becomes steeper as the loading angle increases, and the ultimate load increases, but the corresponding displacement decreases. (2) There are significant differences between load-horizontal displacement curve and load-vertical displacement curve, the former curve is complete and the nonlinear development is sufficient. Besides the vertical pullout, and the vertical ultimate displacement at other loading angles is far less than the horizontal ultimate displacement. (3) The ratio of inclined pullout capacity TU(a) to the vertical pullout capacity Tu(90°) with the same burial depth ratio is linear with the loading angle. (4) Soil pressure on anchor blade is influenced by two anchor-soil interaction mechanisms, The maximum soil pressure coefficient is related to the burial depth ratio and the friction angle of soil, the value of which can reach nearly twice of the passive soil pressure coefficient. (5) In the range of [0°,65°], the inclined pullout bearing characteristics of screw anchor pile is controlled by horizontal loading, while in the range of [65°,90°], that is controlled by vertical loading. The vertical component of the inclined loading can improve the horizontal bearing capacity of screw anchor pile, but it can be regarded as a safety reserve in the design judgement.

关键词

光伏发电 / 螺旋桩 / 斜向拉拔 / 承载特性 / 土压力强度 / 控制机理

Key words

PV power screw anchor pile / inclined loading / bearing characteristic / soil pressure intensity / control mechanism

引用本文

导出引用
胡伟, 杨瑶, 刘顺凯, 林志, 吴秋红, 黄勇祥. 光伏支架螺旋桩斜向拉拔承载特性试验研究[J]. 太阳能学报. 2022, 43(12): 50-61 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0729
Hu Wei, Yang Yao, Liu Shunkai, Lin Zhi, Wu Qiuhong, Huang Yongxiang. EXPERIMENT STUDY ON INCLINED PULLOUT BEARING CHARACTERISTIC OF SCREW ANCHOR PILE OF PHOTOVOLTAIC BRACKET[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 50-61 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0729
中图分类号: TU441   

参考文献

[1] 刘杨. 中国石油首个大规模集中式光伏发电项目投运[N]. 中国证券报, 2021-12-29(A05).
LIU Y. CNPC’s first large-scale centralized photovoltaic power generation project was put into operation[N]. China securities journal, 2021-12-29(A05).
[2] 缪博艺, 李延平, 欧阳春子. 做新能源工程建设赛道领跑者[N]. 中国石油报, 2022-01-05(002).
MIU B Y, LI Y P, OUYANG C Z. Be the leader of new energy engineering and construction track[N]. China petroleum daily.2022-01-05(002).
[3] 张金梦. 赋能城市节能降碳, 分布式能源“风”正足[N]. 中国能源报, 2021-09-27(025).
ZHANG J M. Empowering cities to save energy and reduce carbon, distributed energy “wind” is sufficient[N]. China energy news, 2021-09-27(025).
[4] 董天文, 梁力, 黄连壮, 等. 螺旋桩基础抗拔试验研究[J]. 岩土力学, 2009, 30(1): 186-190.
DONG T W, LIANG L, HUANG L Z, et al.Pullout test of screw pile foundation[J]. Rock and soil mechanics, 2009, 30(1): 186-190.
[5] 郝冬雪, 陈榕, 符胜男. 砂土中螺旋锚上拔承载特性模型试验研究[J]. 岩土工程学报, 2015, 37(1): 126-132.
HAO D X, CHEN R, FU S N.Experimental study on uplift capacity of multi-helix anchors in sand[J]. Chinese journal of geotechnical engineering, 2015, 37(1): 126-132.
[6] MOHYEDDIN A, GAD E, LEE J, et al.Adverse effect of too-small edge distances on tensile capacity of screw anchors[J]. Australian journal of structural engineering, 2020, 21(1): 1-13.
[7] BENJAMIN C, JONATHAN K, MICHAEL J B, et al.Optimised design of screw anchors in tension in sand for renewable energy applications[J]. Ocean engineering, 2020, 217: 108010.
[8] 彭源. 内蒙古最大集中连片光伏基地一期项目并网发电[J]. 信息技术与信息化, 2018(12): 8.
PENG Y.Inner Mongolia’s largest concentrated continuous photovoltaic base Phase I project grid-connected power generation[J]. Information technology and informatization, 2018(12): 8.
[9] 芳旭. 青海省集中式光伏发电量居全国首位[J]. 新西部, 2020(Z5): 126.
FANG X.Centralized photovoltaic power generation in Qinghai Province ranks first in China[J]. New west, 2020(Z5): 126.
[10] 许宁, 李旭辉, 高晨崇, 等. 光伏系统风荷载体型系数分析[J]. 太阳能学报, 2021, 42(10): 17-22.
XU N, LI X H, GAO C C, et al.Analysis of shape coefficients of wind loads of photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(10): 17-22.
[11] SEIDER G L, CHISHOLM J B.Lateral capacity of helical piles-actual vs. theoretical foundations for solar power plants[C]//Geocongress, Oakland, California, 2012: 315-325.
[12] 刘丰敏, 杜风雷. 光伏支架桩基础水平承载力计算方法与试验研究[C]//第十届深基础工程发展论坛论文集, 中国, 济南, 2020: 185-187.
LIU F M, DU F L.Calculation method and experimental study of horizontal bearing capacity of photovoltaic pile foundation[C]//Collected Papers of Proceedings of the 10th Deep Foundation Engineering Development Forum, Ji’nan, China, 2020: 185-187.
[13] 孔洋, 阮怀宁, 黄雪峰, 等. 光伏支架抗拔锚固微型桩作用机理研究[J]. 太阳能学报, 2020, 41(2): 262-267.
KONG Y, RUAN H N, HUANG X F,et al.Study on mechanism of action of anti-uplift anchoring micropiles for PV surpport bracket[J]. Acta energiae solaris sinica, 2020, 41(2): 262-267.
[14] 李青松, 文磊, 孔纲强, 等. 基于孔扩张理论的螺旋桩抗拔承载力计算分析[J]. 岩土力学, 2021, 42(4): 1088-1094, 1103.
LI Q S, WEN L, KONG G Q, et al.Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method[J]. Rock and soil mechanics, 2021, 42(4): 1088-1094, 1103.
[15] 胡伟, 孟建伟, 姚琛, 等. 浅埋平板圆锚竖向拉拔极限承载力计算方法[J]. 岩土力学, 2020, 41(9): 3049-3055.
HU W, MENG J W, YAO C, et al.A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate[J]. Rock and soil mechanics, 2020, 41(9): 3049-3055.
[16] 董天文, 梁力. 竖向受压螺旋桩荷载沉降函数解[J]. 岩土工程学报, 2007(10): 1483-1487.
DONG T W, LIANG L.Solution of load-settlement function of single screw pile under axial pressure[J]. Chinese journal of geotechnical engineering, 2007(10): 1483-1487.
[17] 张亚军, 位东升, 梁力. 斜向荷载抗拔螺旋桩桩土荷载传递特性试验[J]. 交通科学与工程, 2009, 25(4): 22-30.
ZHANG Y J, WEI D S, LIANG L.The loading translation of screw pile on pullout test under inclined loading[J]. Journal of transport science and engineering, 2009, 25(4): 22-30.
[18] PRASAD Y, RAO S N.Lateral capacity of helical piles in clays[J]. Journal of geotechnical engineering, 1996, 122(11): 938-941.
[19] MITTAL S, GANJOO B, SHEKHR S.Static equilibrium of screw anchor pile under lateral load in sands[J]. Geotechnical & geological engineering, 2010, 28(5): 717-725.
[20] 胡伟, 孟建伟, 刘顺凯, 等. 单螺旋锚桩水平承载机理试验与理论研究[J]. 岩土工程学报, 2020, 42(1): 158-167.
HU W, MENG J W, LIU S K, et al.Experimental and theoretical researches on horizontal bearing mechanism of single screw anchor pile[J]. Chinese journal of geotechnical engineering, 2020, 42(1): 158-167.
[21] DONG T W, ZHENG Y R.Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method[J]. Journal of central south university, 2014, 21(3): 1165-1175.
[22] OCHANG K, JIYEONG L, GARAM K, et al.Investigation of pullout load capacity for helical anchors subjected to inclined loading conditions using coupled Eulerian-Lagrangian analyses[J]. Computers and geotechnics, 2019, 111: 66-75.
[23] LEE J, KWOH O, KIM I, et al.Cyclic pullout behavior of helical anchors for offshore floating structures under inclined loading condition[J]. Applied ocean research, 2019, 92: 101937.
[24] 刘志鹏, 孔纲强, 文磊, 等. 螺旋桩竖向抗拔极限承载力理论计算分析[J]. 中南大学学报(自然科学版), 2021, 52(10): 3659-3667.
LIU Z P, KONG G Q, WEN L, et al.Theoretical calculation on ultimate bearing capacity of helical piles under tension[J]. Journal of Central South University(science and technology), 2021, 52(10): 3659-3667.
[25] MEYERHOF G G.Uplift resistance of inclined anchors and piles[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1975, 12(7): 97-97.
[26] SAEEDY H S.Stability of circular vertical earth anchors[J]. Canadian geotechnical journal, 1987, 24(3): 452-456.
[27] Q/GDW 10584-2018, 架空输电线路螺旋锚基础设计技术规范[S].
Q/GDW 10584-2018, Technical regulation for design screw anchors foundation of overhead transmission line[S].
[28] 林志, 胡伟, 赵璞, 等. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究[J]. 岩土力学, 2021, 42(11): 3059-3068, 3168.
LIN Z, HU W, ZHAO P, et al.Model test study on inclined pullout bearing characteristics of flat circular anchor in sand[J]. Rock and soil mechanics, 2021, 42(11): 3059-3068, 3168.

基金

国家自然科学基金(52178332)

PDF(2368 KB)

Accesses

Citation

Detail

段落导航
相关文章

/