融合残差与VMD-ELM-LSTM的短期风速预测

张琰妮, 史加荣, 李津, 云斯宁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 340-347.

PDF(2281 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2281 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 340-347. DOI: 10.19912/j.0254-0096.tynxb.2022-0738

融合残差与VMD-ELM-LSTM的短期风速预测

  • 张琰妮1, 史加荣1, 李津1, 云斯宁2
作者信息 +

SHORT-TERM WIND SPEED PREDICTION BASED ON RESIDUAL AND VMD-ELM-LSTM

  • Zhang Yanni1, Shi Jiarong1, Li Jin1, Yun Sining2
Author information +
文章历史 +

摘要

准确可靠的风速预测有利于维护电力系统的安全运行。为提高预测精度,本文提出一种融合残差与变分模态分解(VMD)、极限学习机(ELM)、长短时记忆(LSTM)的短期风速预测模型。首先,VMD算法将风速序列分解为若干个子序列以降低原始数据复杂度。接着将ELM作为初始预测引擎,用来提取各风速子序列特征。然后,对所有预测子序列进行重构,得到初步预测结果。为进一步挖掘原始风速序列中的不平稳特征,采用LSTM对初步预测结果的残差进行建模。最后,集成预测的残差与初步结果,得到最终的预测值。在真实风电场数据上开展实验,并将预测结果与其他模型对比。实验结果表明,所提模型能显著提升风速序列的预测性能。

Abstract

Reliable and accurate wind speed prediction is beneficial to maintain the safe operation of power system. In order to improve the prediction accuracy, a short-term wind speed forecasting model is proposed based on residual, variational mode decomposition (VMD), extreme learning machine (ELM) and long short-term memory(LSTM). Firstly, the VMD algorithm is used to decompose the wind speed sequence into several sub-sequences to reduce the complexity of the original data. Secondly, the ELM network is employed as the initial prediction engine to extract the features of each wind speed sub-sequence. Then, all the sub-sequences are reconstructed to obtain the preliminary prediction results. To further mine the unstable characteristics of the raw wind speed time series, the LSTM is utilized for modelling the residuals of the preliminary prediction results. Finally, the resulting prediction wind speeds are obtained by integrating the predicted residuals and the preliminary results. Experiments are carried out on a real wind farm dataset and the predicted results are compared with other models. Experimental results show that the proposed model can significantly improve the prediction performance.

关键词

风力发电 / 风速预测 / 变分模态分解 / 长短时记忆 / 极限学习机 / 残差序列

Key words

wind power / wind speed forecasting / variational mode decomposition / long short-term memory / extreme learning machine / residual sequence

引用本文

导出引用
张琰妮, 史加荣, 李津, 云斯宁. 融合残差与VMD-ELM-LSTM的短期风速预测[J]. 太阳能学报. 2023, 44(9): 340-347 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0738
Zhang Yanni, Shi Jiarong, Li Jin, Yun Sining. SHORT-TERM WIND SPEED PREDICTION BASED ON RESIDUAL AND VMD-ELM-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 340-347 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0738
中图分类号: TM614   

参考文献

[1] LIANG T, ZHAO Q, LYU Q Z, et al.A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers[J]. Energy, 2021, 230: 120904.
[2] CHEN J, ZENG G Q, ZHOU W N, et al.Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy conversion and management, 2018, 165: 681-695.
[3] ALKHAYAT G, MEHMOOD R.A review and taxonomy of wind and solar energy forecasting methods based on deep learning[J]. Energy and AI, 2021, 4: 100060.
[4] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326, 6596.
PENG X S, XIONG L, WEN J Y, et al.A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36(23): 6315-6326, 6596.
[5] 张冬雪. 基于LSTM和ARIMA的风速时间序列预测研究[D]. 兰州: 兰州大学, 2020.
ZHANG D X.Prediction of wind speed time series based on LSTM and ARIMA[D]. Lanzhou: Lanzhou University, 2020.
[6] 李志鹏, 张智瀚, 王睿, 等. 基于变分模态分解和改进鲸鱼算法优化的模糊神经网络风速预测模型[J]. 电力与能源, 2019, 40(3): 275-279, 302.
LI Z P, ZHANG Z H, WANG R, et al.Optimized fuzzy neural network wind speed prediction model based on VMD and improved whale algorithm[J]. Power & energy, 2019, 40(3): 275-279, 302.
[7] HE J J, YU C J, LI Y L, et al.Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning[J]. Energy conversion and management, 2020, 205: 112418.
[8] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[9] 陶凯, 吴定会. 基于VMD-JAYA-LSSVM的短期风电功率预测[J]. 控制工程, 2021, 28(6): 1143-1149.
TAO K, WU D H.Short-term wind power prediction based on VMD-JAYA-LSSVM[J]. Control engineering of China, 2021, 28(6): 1143-1149.
[10] GAN M, PAN H D, CHEN Y P, et al.Application of the variational mode decomposition (VMD) method to river tides[J]. Estuarine, coastal and shelf science, 2021, 261: 107570.
[11] 史加荣, 赵丹梦, 王琳华, 等. 基于RR-VMD-LSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.
SHI J R, ZHAO D M, WANG L H, et al.Short-term wind power prediction based on RR-VMD-LSTM[J]. Power system protection and control, 2021, 49(21): 63-70.
[12] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[13] 黄南天, 袁翀, 王新库, 等. 基于互信息属性分析与极端学习机的超短期风速预测[J]. 电工电能新技术, 2016, 35(10): 29-34.
HUANG N T, YUAN C, WANG X K, et al.Ultra-short-term wind speed forecasting based on mutual information attributes analysis and extreme learning machine[J]. Advanced technology of electrical engineering and energy, 2016, 35(10): 29-34.
[14] SUN Z X, ZHAO M Y.Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis[J]. IEEE access, 2020, 8: 134422-134434.
[15] 陈强伟, 蔡文皓, 牛春光, 等. 基于VMD的APF谐波检测算法[J]. 电力科学与技术学报, 2018, 33(1): 120-124.
CHEN Q W, CAI W H, NIU C G, et al.A APF harmonics detection method based on VMD[J]. Journal of electric power science and technology, 2018, 33(1): 120-124.
[16] 王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45-52.
WANG J, LI X, ZHOU X D, et al.Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power system protection and control, 2020, 48(11): 45-52.
[17] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318.
YU X Y, ZHAO Y M, YANG N N, et al.Photovoltaic power generation forecasting based on VMD-SE-LSSVM and iterative error correction[J]. Acta energiae solaris sinica, 2020, 41(2): 310-318.
[18] 董正. 基于AdaBoostRVM的滚动轴承剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.
DONG Z.Research on remaining useful life prediction method of a rolling bearing based on AdaBoostRVM[D]. Harbin: Harbin University of Science and Technology, 2018.
[19] 潘超, 秦本双, 蔡国伟, 等. 一种新型模块化风速预测方法[J]. 太阳能学报, 2019, 40(8): 2196-2204.
PAN C, QIN B S, CAI G W, et al.A new modular forecasting method of wind speed[J]. Acta energiae solaris sinica, 2019, 40(8): 2196-2204.
[20] 王顺江, 范永鑫, 潘超, 等. 基于主成分约简聚类的优化ELM短期风速组合预测[J]. 太阳能学报, 2021, 42(8): 368-373.
WANG S J, FAN Y X, PAN C, et al.Short-term wind speed combined forecasting based on optimized ELM of principal component reduction clustering[J]. Acta energiae solaris sinica, 2021, 42(8): 368-373.
[21] 高桂革, 原阔, 曾宪文, 等. 基于改进CEEMD-CS-ELM的短期风速预测[J]. 太阳能学报, 2021, 42(7): 284-289.
GAO G G, YUAN K, ZENG X W, et al.Short-term wind speed prediction based on improved CEEMD-CS-ELM[J]. Acta energiae solaris sinica, 2021, 42(7): 284-289.
[22] 苏盈盈, 李翠英, 王晓峰, 等. 风电场短期风速的C-C和ELM快速预测方法[J]. 电力系统及其自动化学报, 2019, 31(7): 76-80, 87.
SU Y Y, LI C Y, WANG X F, et al.Fast prediction method for short-term wind speed in wind farm combined with C-C and ELM[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 76-80, 87.
[23] WANG L H, SHI J R.A comprehensive application of machine learning techniques for short-term solar radiation prediction[J]. Applied sciences, 2021, 11(13): 5808.
[24] CHEN Y R, WANG Y, DONG Z K, et al.2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model[J]. Energy conversion and management, 2021, 244(4): 114451.
[25] LIU X L, LIN Z, FENG Z M.Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM[J]. Energy, 2021, 227: 120492.
[26] GB/T 18709—2002, 风电场风能资源测量方法[S].
GB/T 18709—2002, Methodology of wind energy resource measurement for wind farm[S].
[27] 徐耀松, 叶雨洁, 王雨虹, 等. 基于横纵向集成学习的短期负荷预测方法[J]. 控制工程, 2023, 30(3): 504-512.
XU Y S, YE Y J, WANG Y H, et al.Load forecasting method based on transverse and longitudinal integrated learning[J]. Control engineering of China, 2023, 30(3): 504-512.
[28] 郑小霞, 周国旺, 任浩翰, 等. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,2017, 36(22): 22-28.
ZHENG X X, ZHOU G W, REN H H, et al.A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of vibration and shock, 2017, 36(22): 22-28.
[29] 樊新海, 石文雷, 张传清. 基于VMD多尺度熵和ABC-SVM的装甲车辆识别[J]. 装甲兵工程学院学报, 2018, 32(6): 68-73.
FAN X H, SHI W L, ZHANG C Q.Armored vehicle identification based on VMD multi-scale entropy and ABC-SVM[J]. Journal of Academy of Armored Forces Engineering, 2018, 32(6): 68-73.
[30] 杨大为, 冯辅周, 赵永东, 等. VMD样本熵特征提取方法及其在行星变速箱故障诊断中的应用[J]. 振动与冲击, 2018, 37(16): 198-205.
YANG D W, FENG F Z, ZHAO Y D, et al.A VMD sample entropy feature extraction method and its application in planetary gearbox fault diagnosis[J]. Journal of vibration and shock, 2018, 37(16): 198-205.

基金

国家重点研发计划(2018YFB1502902); 陕西省自然科学基金(2021JM-378)

PDF(2281 KB)

Accesses

Citation

Detail

段落导航
相关文章

/