基于IBSO-SDT的风电爬坡事件检测方法

余洋, 陈东阳, 王卜潇, 李佳丽, 吴玉威, 余宗哲

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 348-355.

PDF(1802 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1802 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 348-355. DOI: 10.19912/j.0254-0096.tynxb.2022-0740

基于IBSO-SDT的风电爬坡事件检测方法

  • 余洋1,2, 陈东阳1,2, 王卜潇1,2, 李佳丽1,2, 吴玉威1,2, 余宗哲1,2
作者信息 +

WIND POWER RAMP EVENT DETECTION METHOD BASED ON IBSO-SDT

  • Yu Yang1,2, Chen Dongyang1,2, Wang Boxiao1,2, Li Jiali1,2, Wu Yuwei1,2, Yu Zongzhe1,2
Author information +
文章历史 +

摘要

为提升风电爬坡事件的检测效果,针对含电池储能的风电场,提出基于改进天牛群优化旋转门算法的爬坡事件检测方法。首先,对天牛群搜索算法进行改进,利用其搜索旋转门算法的最优门宽,并据此提取风电功率的特征数据点;然后,对特征数据点进行处理以消除“凸起”现象,进而连接相邻两个数据点形成一个风电特征时段,将风电特征时段进行分类,结合爬坡方向对其进行编码,并依据编码结果进行合并;接着,结合给出的含电池储能风电场爬坡事件定义,对合并后的风电特征时段进行爬坡事件检测;最后,利用某风电场实际运行数据对检测方法进行仿真,并与多种爬坡事件检测方法进行对比,验证了所提方法的有效性。

Abstract

To improve the detection effect of wind power ramp event, a wind power ramp event detection method based on swing door trending optimized by improved beetle swarm optimization algorithm is proposed for wind farm with battery storage. Firstly, the beetle swarm optimization algorithm is improved and used to search the optimal door value of swing door trending. The wind power feature data points are extracted through the swing door trending with optimal door value. Then, the feature data points are processed to eliminate the‘bump’phenomenon. Two adjacent data points is connected to form a wind power feature period. The wind power feature periods are classified and coded in combination with the ramp direction. They are also combined according to the coding results. Next, the ramp definition of wind farm with battery storage is introduced and the ramp detection is performed based on the combined wind power feature periods. Finally, the actual wind power output of a wind farm is used to simulate the proposed detection method. The effectiveness of the proposed detection method is verified in comparison with the various ramp event detection algorithms.

关键词

风电场 / 电池储能 / 启发式算法 / 旋转门算法 / 爬坡事件检测

Key words

wind farm / battery storage / heuristic algorithms / swing door trending algorithm / ramp event detection

引用本文

导出引用
余洋, 陈东阳, 王卜潇, 李佳丽, 吴玉威, 余宗哲. 基于IBSO-SDT的风电爬坡事件检测方法[J]. 太阳能学报. 2023, 44(9): 348-355 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0740
Yu Yang, Chen Dongyang, Wang Boxiao, Li Jiali, Wu Yuwei, Yu Zongzhe. WIND POWER RAMP EVENT DETECTION METHOD BASED ON IBSO-SDT[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 348-355 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0740
中图分类号: TM71   

参考文献

[1] WANG W, LIU L, LIU J Z, et al.Energy management and optimization of vehicle-to-grid systems for wind power integration[J]. CESS journal of power and energy systems, 2021, 7(1): 172-180.
[2] 贾伟青, 任永峰, 薛宇, 等. 基于小波包-模糊控制的混合储能平抑大型风电场功率波动[J]. 太阳能学报, 2020, 42(9):357-363.
JIA W Q, REN Y F, XUE Y, et al.Wavelet packet-fuzzy control of hybrid energy storage for power fluctuation smoothing of large wind farm[J]. Acta energiae solaris sinica, 2021, 42(9): 357-363.
[3] 孙泽伦, 陈洁, 闫亚岭, 等. 基于混合储能平抑风电波动的双堆自循环协调控制[J]. 太阳能学报, 2021, 42(4):125-132.
SUN Z L, CHEN J, YAN Y L, et al.Coordination control of double reactors self-circulation based on hybrid energy storage for wind power fluctuation suppression[J]. Acta energiae solaris sinica, 2021, 42(4): 125-132.
[4] FUJIMOTO Y, TAKAHASHI Y, HAYASHI Y.Alerting to rare large-scale ramp events in wind power generation[J]. IEEE transactions on sustainable energy, 2018, 10(1): 55-65.
[5] LYNERS D, VERMEULEN H, GROCH M.Wind power ramp event detection using a multi-parameter segmentation algorithm[J]. Energy reports, 2021, 7: 5536-5548.
[6] 徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 4626-4638.
XU H, LI H Q.Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power system technology, 2020, 44(12): 4626-4638.
[7] 唐振浩, 孟庆煜, 曹生现, 等. 基于小波深度置信网络的风电爬坡预测方法[J]. 太阳能学报, 2019, 40(11):3213-3220.
TANG Z H, MENG Q Y, CAO S X, et al.Wind power ramp prediction algorithm based on wavelet deep belief network[J]. Acta energiae solaris sinica, 2019, 40(11):3213-3220.
[8] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6):61-69.
SHU Y B, CHEN G P, HE J B, et al.Building a new electric power system based on new energy sources[J]. Strategic study of CAE, 2021, 23(6):61-69.
[9] 杨茂, 马剑, 李大勇, 等. 超短期风电功率爬坡事件检测和统计分析[J]. 电力系统保护与控制, 2018, 46(6): 62-68.
YANG M, MA J, LI D Y, et al.Ultra-short-term wind power climbing event detection and statistical analysis[J]. Power system protection and control, 2018, 46(6): 62-68.
[10] SEVLIAN R, RAJAGOPAL R.Detection and statistics of wind power ramps[J]. IEEE transactions on power systems, 2013, 28(4): 3610-3620.
[11] 张颖超, 宗阳, 邓华, 等. 基于趋势特征的风电功率爬坡事件检测方法[J]. 电测与仪表, 2020, 57(18): 122-127, 132.
ZHANG Y C, ZONG Y, DENG H, et al.Wind power ramp event detection method based on trend feature[J]. Electrical measurement & instrumentation, 2020, 57(18): 122-127, 132.
[12] OUYANG T H, ZHA X M, QIN L, et al.Prediction of wind power ramp events based on residual correction[J]. Renewable energy, 2019, 136: 781-792.
[13] CUI Y, HE Y J, XIONG X, et al.Algorithm for identifying wind power ramp events via novel improved dynamic swinging door[J]. Renewable energy, 2021, 171:542-556.
[14] QU Y P, XU J, SUN Y Z, et al.A parameter and resolution adaptive algorithm for rapid detection of ramp events in different timescale databases of the power system[J]. International journal of electrical power & energy systems, 2019, 112: 393-403.
[15] ZHANG F, CHENG L, LI X, et al.Application of a real-time data compression and adapted protocol technique for WAMS[J]. IEEE transactions on power systems, 2015, 30(2): 653-662.
[16] 胥峰. SCADA系统中的压缩算法的研究[D]. 成都: 西南交通大学, 2012.
XU F.Study of the data compression algorithm in the SCADA system[D]. Chengdu: Southwest Jiaotong University, 2012.
[17] JIANG X Y, LI S A.BAS:beetle antennae search algorithm for optimization problems[J]. International journal of robotics and control, 2018, 1(1): 1-5.
[18] WANG Z Y, YAO L G, CAI Y W, et al.Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis[J]. Renewable energy, 2020, 155: 1312-1327.
[19] FU W L, FANG P, WANG K, et al.Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model[J]. Renewable energy, 2021, 179:1122-1139.
[20] WANG T T, YANG L, LIU Q A.Beetle swarm optimization algorithm: theory and application[J]. Filomat, 2020, 34(15): 5121-5137.
[21] 杨茂, 刘红柳. 超短期风电功率爬坡事件对风电功率实时预测误差的影响研究[J]. 太阳能学报, 2017, 38(3):571-577.
YANG M, LIU H L.Ultra-short-term wind power climbing event research on the effect of wind power real-time prediction error[J]. Acta energiae solaris sinica, 2017, 38(3): 571-577.
[22] 何川, 刘天琪, 胡晓通, 等. 基于超短期风电预测和混合储能的风电爬坡优化控制[J]. 电网技术, 2017, 41(3): 782-790.
HE C, LIU T Q, HU X T, et al.Optimal control of wind ramp based on very short-term wind forecast and hybrid ESS[J]. Power system technology, 2017, 41(3): 782-790.
[23] 渠晓刚, 温鑫, 张晓康. 基于损伤力学的桥式起重机疲劳寿命分析[J]. 安全与环境学报, 2021, 21(3): 1012-1016.
QU X G, WEN X, ZHANG X K.Assessing and analysis of the fatigue life of the bridge-type crane based on the damage mechanics[J]. Journal of safety and environment, 2021, 21(3): 1012-1016.
[24] 徐正华. 基于残差修正的风电功率爬坡预测及其控制策略研究[D]. 上海: 上海电机学院, 2020.
XU Z H.Research for wind power ramp events prediction and control strategy based on residual correction[D]. Shanghai: Shanghai Dianji University, 2020.

基金

国家重点研发计划(2018YFE0122200); 国家自然科学基金(52077078); 中央高校基本科研业务费(2020MS090)

PDF(1802 KB)

Accesses

Citation

Detail

段落导航
相关文章

/