通过分析电解制氢效率与制氢功率的关系,提出一种基于分段模糊控制电解槽阵列效率提升的策略,基于大规模风-氢耦合系统应用场景,建立考虑风电制氢效率的风电制氢系统优化调度模型,并采用人工蜂群算法求解最优制氢功率。仿真结果表明,所提出的控制策略不仅可保证电解槽的安全运行,同时能提高电解槽的制氢效率,为电解制氢系统在电力系统中的大规模应用提供理论依据。最后,在此基础上,加入电解槽阵列的模块化优化策略,使建立的分段模糊控制器能够统筹安全性、经济性、能效性,以期为氢能在电力系统中的大规模应用提供理论依据。
Abstract
By analyzing the relationship between the efficiency of electrolyzer and hydrogen production power, this paper proposes a strategy to improve the efficiency of electrolyzer array based on subsection fuzzy control. Based on the scenario of large-scale wind power to hydrogen system, an optimal adjustment model of wind power to hydrogen system considering the efficiency of electrolyzer is established, and the optimal power of hydrogen production is calculated by an artificial bee colony algorithm. The simulation results show that the control strategy proposed in this paper can not only ensure the operation safety of the electrolyzer, but also improve the efficiency of the electrolyzer, providing a theoretical basis for the large-scale electrolyzer of application in the power system. Finally, based on the previous research results, a modular optimization strategy is added to the electrolyzer, enabling the established subsection fuzzy controller to coordinate the safety, economy and energy efficiency, and providing a theoretical basis for the large-scale application of hydrogen energy in the power system.
关键词
风电 /
电解制氢 /
可再生能源 /
模糊控制 /
电解效率 /
协调优化策略
Key words
wind power /
electrolytic hydrogen production /
renewable energy /
fuzzy control /
electrolysis efficiency /
coordinated optimization strategy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 李光辉, 郭丽军, 等. “十四五”规划下氢能应用技术现状综述及前景展望[J]. 电气应用, 2021, 40(6): 10-16.
LI J L, LI G H, GUO L J, et al.Overview and prospect of hydrogen energy application technology under the 14th Five Year Plan[J]. Electrotechnical application, 2021, 40(6): 10-16.
[2] 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43(6): 428-434.
ZHANG J H, KAN S J, HUA Y W, et al.Capacity optimization of chp microgrid based on hydrogen energy storage[J]. Acta energiae solaris sinica, 2022, 43(6): 428-434.
[3] 饶宇飞, 司学振, 谷青发, 等. 储能技术发展趋势及技术现状分析[J]. 电器与能效管理技术, 2020, 10: 7-15.
RAO Y F, SI X Z, GU Q F, et al.Energy storage technology development trend and technology status analysis[J]. Electrical & energy management technology, 2020, 10: 7-15.
[4] NIKOLAIDIS P, POULLIKKAS A.A comparative overview of hydrogen production processes[J]. Renewable & sustainable energy reviews, 2017, 67: 597-611.
[5] 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C,TAN Z H,CHAO H P.Feasibility study of hydrogen energy application on data center under“carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[6] 赵金国, 郭恒. 氢燃料电池氢气利用率提升策略研究[J]. 太阳能学报, 2022, 43(8): 510-516.
ZHAO J G, GUO H.Research on hydrogen utilization rate enhancement strategy of hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(8): 510-516.
[7] SOUTHALL G D, KHARE A.The feasibility of distributed hydrogen production from renewable energy sources and the financial contribution from UK motorists on environmental grounds[J]. Sustainable cities & society, 2016, 26(5): 134-149.
[8] NAGASAWA K, DAVIDSON F T, LLOYD A C, et al.Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles[J]. Applied energy, 2019, 235: 1001-1016.
[9] HE W, ABBAS Q, ALHARTHI M, et al.Integration of renewable hydrogen in light-duty vehicle: Nexus between energy security and low carbon emission resources[J]. International journal of hydrogen energy, 2020, 45(51): 27958-27968.
[10] DAGDOUGUI, OUAMMI A, SACILE R.A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources[J]. International journal of hydrogen energy, 2011, 36(22): 14324-14334.
[11] 陈晓雯, 李奇, 蒲雨辰, 等. 基于等效氢耗特征的孤岛电-氢混合储能多微电网功率自适应分配控制方法研究[J]. 电网技术, 2023, 47(3): 896-908.
CHEN X W, LI Q, PU Y C, et al.Power adaptive distribution control of isolated multi-microgrids containing electric-hydrogen hybrid energy storage based on equivalent hydrogen consumption characteristics[J]. Power system technology, 2023, 47(3): 896-908.
[12] ABDELKAFI A, KRICHEN L.Energy management optimization of a hybrid power production unit based renewable energies[J]. Electrical power and energy systems, 2014, 62(25): 1-9.
[13] 蔡国伟, 孔令国, 徐昂翾, 等. 基于改进化学反应优化算法的风/氢/燃并网系统功率平滑经济性评估[J]. 电工技术学报, 2017, 32(20): 251-260.
CAI G W, KONG L G, XU A X, et al.Economical evaluation of wind/hydrogen/fuel cell grid-connected system power smoothing based on improved chemical reaction optimization algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 251-260.
[14] 张鹏, 李佳烨, 潘原. 单原子催化剂在氢燃料电池阴极氧还原反应中的研究进展[J]. 太阳能学报, 2022, 43(6): 306-320.
ZHANG P,LI J Y,PAN Y.Progress of single atom catalysts in cathodic oxygen reduction for reaction hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(6): 306-320.
[15] 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033.
LI J R, LIN J, XING X T, et al.Technology portfolio selection and optimal planning of power-to-hydrogen (P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033.
[16] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
SUN H X, LI Z, CHEN A B, et al.Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[17] QUARTON C J, SAMSATLI S.The value of hydrogen and carbon capture, storage and utilization in decarbonizing energy: insights from integrated value chain optimization[J]. Applied energy, 2020, 257: 113936.
[18] ZENG K, ZHANG D.Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in energy and combustion science, 2010, 36(3): 307-326.
[19] 邓浩, 陈洁, 焦东东, 等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术, 2020, 46(1): 99-106.
DENG H, CHEN J, JIAO D D, et al.Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High voltage engineering, 2020, 46(1): 99-106.
基金
中国电力科学研究院长线攻关项目(DG83-21-007)