以大血藤药渣为原料,通过水热和活化处理制得分级多孔结构的活性炭,并研究其作为锌离子混合超级电容器正极材料的电化学特性。活化温度为800 ℃时制得的活性炭比表面积为2516 m2/g,总孔容为1.335 cm3/g;以所制得的大血藤基活性炭为正极材料组装的锌离子混合超级电容器在0.1 A/g电流密度条件下的比容量高达177.1 mAh/g,显著优于传统超级电容器;在10 A/g电流密度下比容量仍可保持在74.6 mAh/g以上;在1.5 A/g电流密度下经过4000圈充放电循环,容量保持率可达85%,展现出良好的倍率性能和充放电循环稳定性。大血藤基活性炭丰富的微孔、介孔、大孔网络以及与电解液离子半径匹配的微孔尺寸是保证其实现高效离子存储的关键。
Abstract
In this work, activated carbon with a hierarchical porous structure was prepared by hydrothermal and activation treatment with the medicinal residue of Sargentodoxa cunea as raw material, and its electrochemical properties as cathode material for zinc-ion hybrid supercapacitor were studied. Studies have shown that the activated carbon prepared at an activation temperature of 800 ℃ has a specific surface area of 2516 m2/g and a total pore volume of 1.335 cm3/g. The specific capacity of the hybrid supercapacitor is as high as 177.1 mAh/g at a current density of 0.1 A/g, which is much better than that of the traditional supercapacitor; at a current density of 10 A/g, the specific capacity can still be maintained above 74.6 mAh/g, after 4000 charge-discharge cycles at a current density of 1.5 A/g, the capacity retention can reach 85%, showing good rate capability and charge-discharge cycling stability. The abundant network of micropores, mesopores and macropores, as well as ion size matching between micropores of activated carbon and electrolyte ions, are the keys to ensure high-efficiency ion storage.
关键词
活性炭 /
电极材料 /
中药渣 /
水热 /
超级电容器
Key words
activated carbon /
electrode materials /
Chinese medicine residue /
hydrothermal /
supercapacitor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LU Q, LI C L.Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure[J]. Journal of cleaner production, 2021, 279: 123856.
[2] 马逊风, 马宏军, 唐占辉, 等. 中药渣剩余成分分析及利用途径研究[J]. 东北师大学报(自然科学版), 2004, 36(2): 108-111.
MA X F, MA H G, TANG Z H, et al.The analyze of the ingredients left in the herb residue and the study of the reuse of the herb residue[J]. Journal of Northeast Normal University (natural science edition), 2004, 36(2): 108-111.
[3] LIAN F, SUN B B, SONG Z G, et al.Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical engineering journal, 2014, 248: 128-134.
[4] WANG Z Y, LIU G C, ZHENG H, et al.Investigating the mechanisms of biochar’s removal of lead from solution[J]. Bioresource technology, 2015, 177: 308-317.
[5] YANG J, QIU K Q.Development of high surface area mesoporous activated carbons from herb residues[J]. Chemical engineering journal, 2011, 167(1): 148-154.
[6] REDDY M V, MAUGER A, JULIEN C M, et al.Brief history of early lithium-battery development[J]. Materials (basel), 2020, 13(8): 1884.
[7] ZENG J, DONG L B, SUN L L, et al.Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units[J]. Nano-micro letters, 2020, 13(1): 19.
[8] 张秋红, 左宋林, 卫歆雨, 等. 磷酸法活性炭作为离子液体超级电容器电极材料的研究[J]. 新型炭材料, 2018, 33(1): 61-70.
ZHANG Q H, ZUO S L, WEI X Y, et al.H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte[J]. New carbon materials, 2018, 33(1): 61-70.
[9] DONG L L, MA X P, LI Y, et al.Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy storage materials, 2018, 13: 96-102.
[10] HAN M J, JIANG K K, JIAO P F, et al.Bio-butanol sorption performance on novel porous-carbon adsorbents from corncob prepared via hydrothermal carbonization and post-pyrolysis method[J]. Scientific reports, 2017, 7(1): 11753.
[11] MA X C, WU Y, FANG M E, et al.In-situ activated ultramicroporous carbon materials derived from waste biomass for CO2 capture and benzene adsorption[J]. Biomass bioenergy, 2022, 158: 106353.
[12] ZHANG H Z, LIU Q Y, FANG Y B, et al.Boosting zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advance materials, 2019, 31(44): 1904948.
[13] WANG H, WANG M, TANG Y B.A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy storage materials, 2018, 13: 1-7.
[14] DONG L L, XU C J, LI Y, et al.Breathable and wearable energy storage based on highly flexible paper electrodes[J]. Advance materials, 2016, 28(42): 9313-9319.
[15] 刘宇喆, 李成才, 李琳, 等. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
LIU Y Z, LI C C, LI L, et al.Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. Chinese journal of chemical engineering, 2022, 73(4): 1807-1816.
[16] BANERJEE P, FRANCO J R A, XIAO R Z, et al. Advancement in electrolytes for rechargeable batteries[J]. Rechargeable batteries, 2020, 8: 87-98.
[17] 黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70.
HUANG X B, ZHANG X, WEI T Z, et al.Development and applications status of supercapacitors[J]. Advanced technology of electrical engineering and energy, 2017, 36(11): 63-70.
基金
国家重点研发计划(2019YFC1906603)