考虑虚拟惯性时间常数和频率二次跌落的风电频率综合控制策略

彭海涛, 何山, 程静, 袁至, 闫学勤, 常喜强

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 509-517.

PDF(5664 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5664 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 509-517. DOI: 10.19912/j.0254-0096.tynxb.2022-0760

考虑虚拟惯性时间常数和频率二次跌落的风电频率综合控制策略

  • 彭海涛1, 何山1,2, 程静1,2, 袁至1,2, 闫学勤1,2, 常喜强3
作者信息 +

WIND POWER INTEGRATED FREQUENCY CONTROL STRATEGY CONSIDERING VIRTUAL INERTIA TIME CONSTANTS AND FREQUENCY SECONDARY DROP

  • Peng Haitao1, He Shan1,2, Cheng Jing1,2, Yuan Zhi1,2, Yan Xueqin1,2, Chang Xiqiang3
Author information +
文章历史 +

摘要

首先,根据虚拟惯性时间常数对风电机组惯性支撑能力进行定量表征,进而分析转矩控制器参数对虚拟惯性时间常数的影响。在此基础上,提出一种自适应下垂控制与转矩控制器模糊自适应控制相结合的频率综合控制策略,实现对虚拟惯性时间常数的灵活调整,在抑制系统频率快速变化的同时,加快频率恢复,并可有效解决频率二次跌落问题。最后通过仿真验证所提控制策略的有效性以及对频率二次跌落的改善作用。

Abstract

In this paper, a quantitative representation of the inertial support capability of wind turbines based on virtual inertia time constant is presented, and then the influence of torque controller parameters on the virtual inertia time constant is analyzed. On this basis, an integrated frequency control strategy combining adaptive droop control and fuzzy adaptive control of the torque controller is proposed to achieve flexible adjustment of the virtual inertia time constant, which can accelerate the frequency recovery while dampening the rapid change of the system frequency and effectively solve the problem of secondary frequency drop. Finally, the effectiveness of the proposed control strategy and the improvement effect on the secondary frequency drop is verified by simulations.

关键词

风力发电 / 综合控制 / 模糊逻辑 / 虚拟惯性时间常数 / 频率二次跌落

Key words

wind power / integrated control / fuzzy logic / virtual inertia time constant / secondary frequency drop

引用本文

导出引用
彭海涛, 何山, 程静, 袁至, 闫学勤, 常喜强. 考虑虚拟惯性时间常数和频率二次跌落的风电频率综合控制策略[J]. 太阳能学报. 2023, 44(8): 509-517 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0760
Peng Haitao, He Shan, Cheng Jing, Yuan Zhi, Yan Xueqin, Chang Xiqiang. WIND POWER INTEGRATED FREQUENCY CONTROL STRATEGY CONSIDERING VIRTUAL INERTIA TIME CONSTANTS AND FREQUENCY SECONDARY DROP[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 509-517 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0760
中图分类号: TM614   

参考文献

[1] 胡泽春, 罗浩成. 大规模可再生能源接入背景下自动发电控制研究现状与展望[J]. 电力系统自动化, 2018, 42(8): 2-15.
HU Z C, LUO H C.Research status and prospect of automatic generation control with integration of large-scale renewable energy[J]. Automation of electric power systems, 2018, 42(8): 2-15.
[2] WILSON D, YU J, AL-ASHWAL N, et al.Measuring effective area inertia to determine fast-acting frequency response requirements[J]. International journal of electrical power & energy systems, 2019, 113: 1-8.
[3] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J]. 太阳能学报, 2020, 41(2): 101-109.
LI S L, QIN S Y, WANG R M, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Automation of electric power systems, 2020, 41(2): 101-109.
[4] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541.
YAN X W, SONG Z J, CUI S, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541.
[5] 孙亮, 杨晓飞, 孙立国, 等. 基于改进虚拟同步发电机的多逆变器频率无差控制策略[J]. 电力系统保护与控制, 2021, 49(11): 18-27.
SUN L, YANG X F, SUN L G, et al.Frequent deviation-free control for microgrid multi-inverters based on improving a virtual synchronous generator[J]. Power system protection and control, 2021, 49(11): 18-27.
[6] 李柏慷, 张峰, 丁磊. 双馈风机参与调频的速度控制器模糊协同控制及参数校正策略[J]. 电网技术, 2022, 46(2): 596-603.
LI B K, ZHANG F, DING L.Fuzzy cooperative control and parameter correction strategy of speed controller in frequency modulation stage of double-fed induction generator[J]. Power system technology, 2022, 46(2): 596-603.
[7] 李少林, 王伟胜, 张兴, 等. 基于频率响应区间划分的风电机组虚拟惯量模糊自适应控制[J]. 电网技术, 2021, 45(5): 1658-1665.
LI S L, WANG W S, ZHANG X, et al.Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division[J]. Power system technology, 2021, 45(5): 1658-1665.
[8] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716.
FU Y, WANG Y, ZHANG X Y, et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716.
[9] 李世春, 邓长虹, 龙志君, 等. 风电场等效虚拟惯性时间常数计算[J]. 电力系统自动化, 2016, 40(7): 22-29.
LI S C, DENG C H, LONG Z J, et al.Calculation of equivalent virtual inertial time constant of wind farm[J]. Automation of electric power systems, 2016, 40(7): 22-29.
[10] 刘皓明, 任秋业, 张占奎, 等. 双馈风机等效惯性时间常数计算及转差率反馈惯量控制策略[J]. 电力系统自动化, 2018, 42(17): 49-57.
LIU H M, REN Q Y, ZHANG Z K, et al.Calculation of equivalent inertia time constant for doubly-fed induction generators and slip-feedback inertia control strategy[J]. Automation of electric power systems, 2018, 42(17): 49-57.
[11] 鲍威宇. 风电惯量参与电网调频的控制研究[D]. 济南: 山东大学, 2021.
BAO W Y.Studies on participation of wind power inertia in power system frequency control[D]. Ji′nan: Shandong University, 2021.
[12] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
QIAO Y, GUO X Q, LU Z X, et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power system technology, 2020, 44(3): 807-815.
[13] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990.
ZHAO J J, LI M, HE X Q, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4990.
[14] LIU Q Y, SI Y D, HUO X L, et al.Coordination control based on virtual inertial time constant and fuzzy logic control for power system with wind farm[C]//The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020.
[15] ZOU J X, PENG C, YAN Y, et al.A survey of dynamic equivalent modeling for wind farm[J]. Renewable and sustainable energy reviews, 2014, 40: 956-963.
[16] QING M Q, TANG F, LIU F S, et al.An analytical method for estimating the maximum penetration of DFIG considering frequency stability[J]. Sustainability, 2020, 12(23): 9850.

基金

国家重点研发计划(2021YFB1506902); 新疆维吾尔自治区高校科研计划(XJEDU2021I010); 自治区重点研发计划(2022B01003-3); 自治区重点实验室开放课题(2020D04048)

PDF(5664 KB)

Accesses

Citation

Detail

段落导航
相关文章

/